Sudaki Ultrases Hızının Sıcaklığa ve Tuzluluğa Bağlılığının İncelenmesi

Bu çalışmada, suda ultrases hızının tuzluluk ve sıcaklıkla değişimi  incelenmiştir. Tuzlu su, kullanılan saf su hacminde ölçülen miktarda sofra tuzunun (NaCl) çözdürülmesiyle hazırlanmıştır. Ölçümler plexi camları olan dikdortgen bir havuzun içinde yapılmıştır. Boyuna ses ötesi darbeleri suya göndermek ve almak için 4 Mhz ‘lik transduser kullanılmıştır. Deneysel ölçümlerden elde edilen veriler kullanılarak hızı, sıcaklık ve tuzluluk fonksiyonu olarak tanımlayan matematiksel bir ifade geliştirilmiştir. Sonuçlar, ultrasonik hızın sıcaklık ve tuzlulukla arttığını göstermiştir.

Investigating The Dependency of Ultrasonic Speed On Temperature and Salinity in Water

In this study, investigations of variations of ultrasonic speed with salinity and temperature in water samples are reported. Initially samples of saline water were prepared by dissolving measured quantities of salt (table salt, NaCl) in a given volume of pure water. Measurements were carried out in a rectangular bath having plexi-glass windows. One transducer with 4 MHz is used for launching and receiving the longitudinal ultrasonic pulses through the water. A mathematical expression describing speed as a function of temperature and salinity is developed. Results indicate that ultrasonic speed increases with temperature and salinity.

___

  • Novelline, R. (1997). Squire’s fundamentals of radiology (5. ed.). Harvard University baskı, s. 34–35.
  • Dymling, S.D., Persson, H.V., Hertz T.G. ve Lindstrom K.A. (1991). A new ultrasonic method for fluid property measurements. Ultrasound in Medicine, Biology, 17, 497-500.
  • Imano, K., Okuyama, D., Chubach, N. (1991). Technique of measuring sound velocity in liquid and solid materials. Electronic Letters, 27(17), 1562-1564.
  • Eggers, F. (1992). Ultrasonic velocity and attenuation meaurements in liquids with resonators, extending the MHz frequency range. Acustica, 76(231).
  • Donnel, M., Busse, L.J. ve Miller, J.G. (1981). Methods of experimental physics, Vol 19. Academic Press, New York, s. 29-65, 85-107.
  • Peshkovsky, A.S., Peshkovsky, S.L. (2010). Acoustic cavitation theory and equipment design principles for industrial applications of high-intensity ultrasound. Book Series: Physics Research and Technology, NY: Nova Science Publishers, Hauppauge, New York.
  • Sokolvo, S.Y. (1929) On the problem of the propagation of ultrasonic oscillations in various bodies. Elek. Nachr. Tech., 6, 454-460.
  • Mason, W.P. ve McSkimm, H.J. (1947). Attenuation and scattering of high frequency sound waves in metals and glasses. Journal of the Acoustical Society of America, 19, 464 -473.
  • Dushaw, B.D., Worcester, P.F., Cornuelle, B.D. ve Howe, B.M. (1993). On equation for the speed of sound in seawater. J. Acoust. Soc. Am., 93, 255-275.
  • Medlock, R.S. (1983). Sensors for mechanical properties. J. Phys. E: Sci. Instrum., 16(10), 964-972.
  • de With, G. (2006). Structure, deformation, and integrity of materials, volume I: fundamentals and elasticity. Wiley-VCH Verlag, Weinheim, Germay, s. 32.
  • Kittel, C. (2005). Introduction to solid state physics. 8. ed., Weinheim: Wiley-VCH Verlag, Weinheim, Germany.
  • Fuller, M.I., Blalock, T.N., Hossack J.A. ve Walker, W.F. (2007). Novel transmit protection scheme for ultrasound systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(1), 79-86.
  • Bilaniuk, N. ve Wong, G.S.K. (1993). Speed of sound in pure water as function of temperature. J. Acoust. Soc. Am., 93(3), 1609-1612.
  • Kroebel, W., Mahr, K.H. (1976). Recent results of absolute sound velocity measurements in pure water and sea water at atmospheric pressure. Acustica, 35, 154-164.