Sıkıştırma Ateşlemeli Bir Motorda Kullanılan Atık Yemek Yağı Biyodizel Karışımının Deneysel ve Sayısal Analizi

İçten yanmalı motorların emisyon değerlerinin azaltılması, gittikçe katılaşan standartların karşılanması için gereklidir. Motor parametreleri ve yanma odası geometrilerinin iyileştirilmesi emisyonları azaltabileceği gibi, alternatif yakıt arayışları da sürmektedir. Atık yemek yağlarından dizel üretimi, hem geri dönüşüm ve çevre duyarlılığı bakımından hem de maliyet bakımından avantajları olmaktadır. Atık yemek yağlar, küçük modifikasyonlarla, yakıt olarak kullanılabilecek duruma gelmektedir. Üretilen biyodizel saf halde kullanılabileceği gibi, dizel ile karıştırılarak kullanılabilmektedir. Bu şekilde, mevcut kullanılan dizel motorlarda herhangi bir modifikasyon yapmaya gerek kalmamaktadır. Bu çalışmada, kütlesel %20 oranında biyodizel, dizel ile karıştırılarak, yakıt olarak sıkıştırma ateşlemeli bir motorda kullanılmıştır ve saf dizel yakıt kullanıma göre performans ve emisyon değerleri karşılaştırılmıştır. Deneysel ve CFD simülasyon çalışmaları sonucunda, B20 yakıt karışımı kullanımıyla, CO emisyonlarında %10.5, NOX emisyonlarında %2.3 ve is emisyonlarında %10.2 oranında azalma gözlemlenmiştir. Ayrıca silindir içi maksimum basınç, %2.5 oranında azalmıştır.

Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a CI Engine

It is necessary to meet increasingly stringent emission standards of IC engines, reducing the emission values. While improving engine parameters and combustion chamber geometries can reduce emissions, also the research continues for alternative fuels. Diesel production from waste cooking oils has advantages in terms of recycling, environment, and cost. Waste cooking oils can be used as fuel with minor modifications. Waste cooking oil-based biodiesel can be used in neat form or blend with diesel. In this way, there is no need to make any modifications to the existing diesel engines. In this study, diesel was blended with biodiesel at 20% (B20) and it was used as fuel in a CI engine. The performance and emission values of this blend were compared according to neat diesel fuel. As a result of the experimental and CFD simulation studies, it was observed that the use of the B20 fuel blend reduced CO emissions by 10.5%, NOX emissions by 2.3%, and soot emissions by 10.2% according to neat diesel usage. In addition, the maximum pressure inside the cylinder has decreased by 2.5%.

___

  • G. Knothe and L. F. Razon, “Biodiesel fuels,” Progress in Energy and Combustion Science, vol. 58. Elsevier Ltd, pp. 36–59, 2017, doi: 10.1016/j.pecs.2016.08.001.
  • C. W. Mohd Noor, M. M. Noor, and R. Mamat, “Biodiesel as alternative fuel for marine diesel engine applications: A review,” Renewable and Sustainable Energy Reviews, vol. 94, no. April. Elsevier Ltd, pp. 127–142, 2018, doi: 10.1016/j.rser.2018.05.031.
  • A. I. Tropecêlo, C. S. Caetano, M. Caiado, and J. E. Castanheiro, “Biodiesel production from waste cooking oil over sulfonated catalysts,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 38, no. 2, pp. 174–182, 2016, doi: 10.1080/15567036.2012.747035.
  • A. N. Phan and T. M. Phan, “Biodiesel production from waste cooking oils,” Fuel, vol. 87, no. 17–18, pp. 3490–3496, 2008, doi: 10.1016/j.fuel.2008.07.008.
  • G. V. More, S. R. Koli, Y. V. H. Rao, P. I. Prasad, and B. N. Rao, “Effect of compression ratio on compression ignition engine with RUCO biodiesel/ diethyl ether/ diesel fuel blends,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 00, no. 00, pp. 1–20, 2020, doi: 10.1080/15567036.2020.1785593.
  • F. Ma and M. A. Hanna, “Biodiesel production: A review,” Bioresource Technology, vol. 70, no. 1, pp. 1–15, 1999, doi: 10.1016/S0960-8524(99)00025-5.
  • Y. C. Wong, “Biodiesel production from used cooking oil,” Oriental Journal of Chemistry, vol. 30, no. 2, pp. 521–528, 2014, doi: 10.13005/ojc/300216.
  • A. Dubey, R. S. Prasad, and J. K. Singh, “An Analytical and Economical Assessment of the Waste Cooking Oil based Biodiesel using Optimized Conditions on the Process Variables,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 00, no. 00, pp. 1–16, 2020, doi: 10.1080/15567036.2020.1839600.
  • M. F. Al-Dawody, A. A. Jazie, and H. Abdulkadhim Abbas, “Experimental and simulation study for the effect of waste cooking oil methyl ester blended with diesel fuel on the performance and emissions of diesel engine,” Alexandria Engineering Journal, vol. 58, no. 1, pp. 9–17, 2019, doi: 10.1016/j.aej.2018.05.009.
  • Y. Ulusoy, R. Arslan, Y. Tekin, A. Sürmen, A. Bolat, and R. Şahin, “Investigation of performance and emission characteristics of waste cooking oil as biodiesel in a diesel engine,” Petroleum Science, vol. 15, no. 2, pp. 396–404, 2018, doi: 10.1007/s12182-018-0225-2.
  • C. Patel et al., “Comparative compression ignition engine performance, combustion, and emission characteristics, and trace metals in particulates from Waste cooking oil, Jatropha and Karanja oil derived biodiesels,” Fuel, vol. 236, no. September 2018, pp. 1366–1376, 2019, doi: 10.1016/j.fuel.2018.08.137.
  • L. Wei, R. Cheng, H. Mao, P. Geng, Y. Zhang, and K. You, “Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends,” Energy, vol. 144, pp. 73–80, 2018, doi: 10.1016/j.energy.2017.12.012.
  • K. A. Abed, A. K. El Morsi, M. M. Sayed, A. A. E. Shaib, and M. S. Gad, “Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine,” Egyptian Journal of Petroleum, vol. 27, no. 4, pp. 985–989, 2018, doi: 10.1016/j.ejpe.2018.02.008.
  • P. Zareh, A. A. Zare, and B. Ghobadian, “Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine,” Energy, vol. 139, pp. 883–894, 2017, doi: 10.1016/j.energy.2017.08.040.
  • M. W. G. Qureshi, Z. M. Khan, M. Hussain, F. Ahmad, M. Shoaib, and M. Qasim, “Experimental evaluation of a diesel engine for combustion, performance and exhaust emissions with fuel blends derived from a mixture of fish waste oil and waste cooking oil biodiesel,” Polish Journal of Environmental Studies, vol. 28, no. 4, pp. 2793–2803, 2019, doi: 10.15244/pjoes/90096.
  • H. Chen, B. Xie, J. Ma, and Y. Chen, “NOx emission of biodiesel compared to diesel: Higher or lower?,” Applied Thermal Engineering, vol. 137, no. December 2017, pp. 584–593, 2018, doi: 10.1016/j.applthermaleng.2018.04.022.
  • P. K. Chaurasiya, S. K. Singh, R. Dwivedi, and R. V. Choudri, “Combustion and emission characteristics of diesel fuel blended with raw jatropha, soybean and waste cooking oils,” Heliyon, vol. 5, no. 5, p. e01564, 2019, doi: 10.1016/j.heliyon.2019.e01564.
  • H. Li, W. Yang, D. Zhou, and W. Yu, “Numerical study of the effects of biodiesel unsaturation on combustion and emission characteristics in diesel engine,” Applied Thermal Engineering, vol. 137, no. January, pp. 310–318, 2018, doi: 10.1016/j.applthermaleng.2018.03.066.
  • M. U. Yangaz, M. R. Özdemir, and R. Şener, “Combustion performance of hydrogen-enriched fuels in a premixed burner,” Environmental Technology (United Kingdom), vol. 0, no. 0, pp. 1–12, Aug. 2019, doi: 10.1080/09593330.2019.1656676.
  • R. Sener, M. R. Özdemir, and M. U. Yangaz, “Effect of the geometrical parameters in a domestic burner with crescent flame channels for an optimal temperature distribution and thermal efficiency,” Journal of Thermal Engineering, 2019, doi: 10.18186/thermal.654303.
  • R. Sener, M. U. Yangaz, and M. Z. Gul, “Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine,” Fuel, 2020, doi: 10.1016/j.fuel.2020.117122.
  • M. Hawi, A. Elwardany, S. Ookawara, and M. Ahmed, “Effect of compression ratio on performance, combustion and emissions characteristics of compression ignition engine fueled with jojoba methyl ester,” Renewable Energy, vol. 141, pp. 632–645, 2019, doi: 10.1016/j.renene.2019.04.041.
  • H. Venu, V. D. Raju, and L. Subramani, “Combined effect of in fl uence of nano additives , combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary ( diesel-biodiesel-ethanol ) blends,” Energy, vol. 174, pp. 386–406, 2019, doi: 10.1016/j.energy.2019.02.163.
  • T. M. Ismail, D. Lu, K. Ramzy, M. A. El-salam, G. Yu, and M. A. Elkady, “Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt,” Energy, vol. 189, p. 116197, 2019, doi: 10.1016/j.energy.2019.116197.
  • A. Asadi et al., “Combustion and emission characteristics of biomass derived biofuel , premixed in a diesel engine : A CFD study,” Renewable Energy, vol. 138, pp. 79–89, 2019, doi: 10.1016/j.renene.2019.01.069.
  • U. Rajak, P. Nashine, T. S. Singh, and T. N. Verma, “Numerical investigation of performance, combustion and emission characteristics of various biofuels,” Energy Conversion and Management, vol. 156, no. August 2017, pp. 235–252, 2018, doi: 10.1016/j.enconman.2017.11.017.
  • F. Zhao et al., “Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels,” Applied Energy, vol. 211, no. May 2017, pp. 187–193, 2018, doi: 10.1016/j.apenergy.2017.11.056.
  • Z. Utlu, “Evaluation of biodiesel fuel obtained from waste cooking oil,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 29, no. 14, pp. 1295–1304, 2007, doi: 10.1080/00908310500434564.
  • K. J. Richards, P. K. Senecal, and E. Pomraning, “CONVERGE 2.4 Manual.” Convergent Science, Madison, WI, p. 1078, 2019.
  • Z. Li et al., “Parametric study of a diesel engine fueled with directly injected methanol and pilot diesel,” Fuel, vol. 256, no. April, p. 115882, Nov. 2019, doi: 10.1016/j.fuel.2019.115882.
  • A. Frassoldati et al., “Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations,” Combustion and Flame, vol. 162, no. 10, pp. 3991–4007, 2015, doi: 10.1016/j.combustflame.2015.07.039.
  • R. D. Reitz, “Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays,” Atomization and Spray Technology, vol. 3, pp. 309–337, 1987.
  • D. P. Schmidt and C. J. Rutland, “A New Droplet Collision Algorithm,” Journal of Computational Physics, 2000, doi: 10.1006/jcph.2000.6568.
  • J. Heywood, Internal combustion engine fundamentals. New York, 1988.
  • H. Hiroyasu and T. Kadota, “Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines,” Feb. 1976, doi: 10.4271/760129.
  • C. Kaya and G. Kökkülünk, “Biodiesel as alternative additive fuel for diesel engines: An experimental and theoretical investigation on emissions and performance characteristics,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 00, no. 00, pp. 1–23, 2020, doi: 10.1080/15567036.2020.1774685.
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi