Organo-Bentonit Üretimi ve Organo-Bentonitlerin Kirlilik Giderimi Çalışmalarında Kullanımı

Son yıllarda organo-bentonitlerin birçok alanda kullanımının arttığı görülmektedir. Organo-bentonitler, bentonitlerden katı hal reaksiyonu veya iyon değişimi yöntemleriyle sentezlenirler. Ancak, çoğunlukla iyon değişimi yöntemi uygulanır ve çeşitli organik bileşik katyonlarının, bentonit yapısındaki katyonlarla yer değiştirmesiyle elde edilirler. Organik bileşik katyonunun yapısı ve üretim koşulları elde edilen organo-bentonitin özelliklerini etkilemektedir. Örneğin bentonit yapısında, uzun zincirli alkil amonyum katyonlarının kullanıldığı durumlarda, üretim koşullarına bağlı olarak bentonitte tabakalar arası boşluk mesafesinin fazlasıyla artması, üretilen malzemelerin yüzey özelliklerinin hidrofilden hidrofoba dönüşmesi, yüzey enerjisinin düşmesi veya yüzey yükünün negatiften pozitife dönüşmesi gibi, değişiklikler olabilmektedir. Organo-bentonitler kullanılarak kirlilik önleme ve çevresel iyileştirme, reolojik katkı malzemesi üretimini içeren endüstriyel uygulamalar, polimerik nanokompozit üretimini kapsayan malzeme bilimi araştırmaları gibi farklı alanlarda uygulanabilen çok sayıda araştırma yapılmıştır. Çevresel kirliliklerin gideriminde ve önlenmesinde organo-bentonitlerin kullanımı konularında yapılan araştırmalarda, endüstriyel atıklardaki kirliliklerin farklı özellikte olabileceği ve kirlilik gideriminde kullanılacak malzemenin bu kirliliklerin birçoğunu tutabilecek özelliklere sahip olması düşüncesinden yola çıkılarak, organo-bentonit üretilebilirliği ve üretilen organo-bentonitlerde anyonik, katyonik veya organik kirleticilerin soğurulması, ayrı ayrı veya birarada incelenmiştir. Bu derleme çalışmanın amacı, bentonitleri organik bileşiklerle modifiye ederek organo-bentonitlerin üretilmesi ve bu modifiye malzemelerin kirlilik gideriminde kullanımı çalışmalarıyla ilgili konularda bugüne dek yapılmış araştırmalarla ilgili önemli gelişmeleri değerlendirip, genel bir bakış sunarak literatüre katkıda bulunmaktır.

Production of Organo-Bentonites and Their Usage in Pollution Removal Studies

Nowadays, organo-bentonite usage has been growing in many areas. Organo-bentonites are synthesized from bentonites by using solid state reactions or ion-exchange methods. Generally ion-exchange is applied and various organic cations are used. They are displaced with exchangeable cations found in bentonite structure. Organic cation properties and production conditions influence product properties. For instance, when the long chain alkyl ammonium cations are used, depending on the synthesis conditions basal space can be increased greatly, surface properties can change to hydrophobic, surface energy can decrease or surface charge can transform to positive. Many researches are made by using organo-bentonites in different fields such as pollution prevention, environmental improvement, rheological additive production for industrial applications and polymeric nanocomposite production for material science applications. In pollution related researches, the properties of the pollutants in wastes can be different and sorbent structure used should sorb many of these pollutants. Based on this idea, organo-bentonite producability under different experimental conditions is investigated and sorption/adsoption mechanisms of anionic, cationic, or organic pollutants onto these organo-bentonites are determined. Purpose of this study is to contribute literature by providing an overview including important developments about production and sorption studies of organo-bentonites with the help of researches executed so far.

___

  • Cheremisinoff, N.P. (2002). Handbook of Water and Wastewater Treatment Technologies, Elsevier Inc., 1-61.
  • Donat, R., Akdogan, A., Erdem, E. ve Cetisli, H. (2005). Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interf Sci, 286, 1, 43-52.
  • Busca, G., Berardinelli, S., Resini, C. ve Arrighi, L. (2008). Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater, 160, 265–288.
  • Masuda, H., Higashitani, K. ve Yoshida, H. (2006). Powder Technology Handbook, Third Edition CRC Taylor & Francis, 878.
  • Lu, S., Pugh, R.J. ve Forssberg, K.S.E. (2005). Interfacial Separation of Particles. In: Studies. In: Interface Science, Möbius, D., Miller, R. (eds.), 20, Series, Elsevier, 97-171.
  • Bradbury, M.H. ve Baeyens, B. (1997). A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part II: modelling. J Contam Hydrol, 27, 223-248.
  • Bradbury M.H. ve Baeyens, B. (2002). Sorption of Eu on Na- and Ca-montmorillonites: Experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Ac, 66, 13, 2325–2334.
  • Çinku K., Boylu, F., Duman, F. ve Çelik, M.S. (2010). Bentonitlerin zenginleştirme ve soda ile aktivasyonunda sudaki iyon varlığı ve miktarının ürün özellikleri üzerindeki etkisi. İ.Ü. Mühendislik Bilimleri Dergisi, 1, 9◦18.
  • Yıldız, N., Gönülşen, R. ve Çalımlı, A. (2006). Tek ve çift katyonlu organo-bentonitlerin hazırlanması ve karakterizasyonu. KİBİTED, 1, 2, 93-105.
  • Yan L., Shan X., Wen B. ve Zhang S. (2007). Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites. J Colloid Interf Sci, 308, 11–19.
  • Gök, O., Özcan, A.S. ve Özcan A. (2010). Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite. Appl Surf Sci, 256, 5439–5443.
  • Koyuncu, H., Yıldız, N., Salgın, U., Koroğlu, F. ve Çalımlı, A. (2011). Adsorption of o-, m- and p-nitrophenols onto organically modified bentonites. J Hazard Mater, 185, 1332–1339.
  • Krishna, B.S., Murty, D.S. R. ve Prakash, B.S.J. (2001). Surfactant-modified clay as adsorbent for chromate. Appl Clay Sci, 20, 65–71.
  • Slade, P.G. ve Gates, W.P. (2004). The swelling of HDTMA smectites as influenced by their preparation and layer charges. Appl Clay Sci, 25, 93-101.
  • Karahan, S., Yurdakoç, M., Seki, Y. ve Yurdakoç, K. (2006). Removal of boron from aqueous solution by clays and modified clays. J Colloid Interf Sci, 293, 36–42.
  • Park, Y., Ayoko, G.A. ve Frost, R.L. (2011). Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. J Colloid Interf Sci, 354, 292–305.
  • Yariv, S. ve Cross H. (2002). Organo-clay complexes and interactions, CRC Press, New York.
  • Lagaly, G., Ogawa, M. ve Dekany, I. (2006). Clay mineral organic interactions. In: Developments in Clay Science, Handbook of Clay Science, Bergaya, F., Theng, B.K.G., Lagaly G. (eds.), Elsevier, Amsterdam, 1, 309-377.
  • Oruçoglu, E. ve Hacıyakupoğlu, S. (2010). Organo- bentonitler ve karakterizasyonlarında kullanılan yöntemler. KİBİTED, 1, 4, 21-37.
  • Jordan, J.W. (1949). Alteration of the properties of bentonite by reaction with amines. Mineral Mag, 28, 598-605.
  • Jordan J.W. (1950). Organophilic bentonites II. J Phys Colloid Chem, 54, 1196-1208.
  • Slabaugh, W.H. ve Culbertson, J.L. (1951). The effect of certain reagents upon the properties of bentonite colloids II organic Amines. J Phys Chem, 55 7, 1131–1139.
  • Greenland, D.J. ve Quirk, J.P. (1960). Adsorption of 1-n-alkyl-pyridinium bromides by montmorillonite. Clay Clay Miner, 9, 484–499.
  • Mortimer, J.V. ve Gent, P.L. (1964). The use of organo- clays as gas chromatographic stationary phases. Anal Chem, 36, 4, 754–756.
  • Slabaugh, W.H. (1971). Surface Chemistry of Thermally Decomposed Organo-Montmorillonite Complexes. Clay Clay Miner, 19, 201-204.
  • Franco, M.A., Gessa, C. ve Cariati F. (1978). Identification of tetramethylammonium ion in methylated NH4-bentonite. Clay Clay Miner, 26, 1, 73- 75.
  • Mortland, M.M., Shaobai, S. ve Boyd, S.M. (1986). Clay-organic complexes as adsorbents for phenol and chlorophenols. Clay Clay Miner, 34, 5, 581-585.
  • Zhang, Z., Sparks, D.L. ve Scrivner N.C. (1993). Sorption and desorption of quaternary amine cations on clays. Environ Sci Technol, 27, 1625-1631.
  • Choy, J.H., Kwak, S.Y., Han, Y.S. ve Kim, B.W. (1997). New organo-montmorillonite complexes with hydrophobic and hydrophilic functions. Mater Lett, 33, 143-147.
  • Moraru V.N. (2001). Structure Formation of Alkylammonium Montmorillonites in Organic Media. Appl Clay Sci, 19, 11–26.
  • Senturk, H.B., Ozdes, D., Gundogdu, A., Duran, C. ve Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. J Hazard Mater, 172, 353–362.
  • Su J., Huang H.G., Jin X.Y., Lu X.Q. ve Chen Z.L. (2011). Synthesis; characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution. J Hazard Mater, 185, 1, 63-70.
  • Chitrakar, R., Makita, Y., Hirotsu, T. ve Sonoda, Montmorillonite A.
  • hexadecylpyridinium chloride as highly efficient anion
  • exchanger for perchlorate ion. Chem Eng J, 191, 141– 146. modified with
  • Krishna, B.S., Murty, D.S. R. ve Prakash, B.S.J. (2000). Thermodynamics of chromium (VI) anionic species sorption onto surfactant-modified montmorillonite clay. J Colloid Interf Sci, 229, 230–236.
  • Majdan, M., Maryuk, O., Pikus, S., Olszewska, E., Kwiatkowski, R. ve Skrzypek H., (2005). Equilibrium, FTIR, scanning electron microscopy and small wide angle X-ray scattering studies of chromates adsorption on modified bentonite, J Mol Struct, 740, 203-211.
  • Odanel-Craver, V.A. ve Smith, J.A. (2006). Quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organo-bentonites, J Hazard Mater B, 137, 1102–1114.
  • Atia, A.A., (2008). Adsorption of chromate and molybdate by cetylpyridinium bentonite, Appl Clay Sci, 41, 73–84.
  • Lee, S.M. ve Tiwari, D. (2012). Organo and inorgano- organo-modified clays in the remediation of aqueous solutions: An overview. Appl Clay Sci, 59-60, 84–102.
  • Bartelt-Hunt, S.L., Burns, S.E. ve Smith, J.A. (2003). Nonionic organic solute sorption onto two organo- bentonites as a function of organic-carbon content. J Colloid Interf Sci, 266, 251–258.
  • Moronta, A., (2004). Catalytic and adsorption properties of modified clay surfaces. In: Interface Science and Technology, Clay Surfaces: Fundamentals and Applications, Wypych. F. ve Satyanarayana, K.G. (eds.), Elsevier, 1, 321-344.
  • Liu, R., Frost, R.L., Martens, W.N. ve Yuan, Y. (2008). Synthesis, characterization of mono, di and tri alkyl surfactant intercalated wyoming montmorillonite for the removal of phenol from aqueous systems. J Colloid Interf Sci, 327, 287-294.
  • Mirmohamadsadeghi, S., Kaghazchi, T., Soleimani, M. ve Asasian, N. (2012). An efficient method for clay modification and its application for phenol removal, from wastewater. Appl Clay Sci, 59–60, 8–12.
  • Fatimah, I. ve Huda T. (2013). Preparation of cetyltrimethylammonium intercalated Indonesian montmorillonite for adsorption of toluene. Appl Clay Sci, 74, 115–120.
  • Chen, C., Zhou, W., Yang, Q., Zhu, L. ve Zhu, L. (2014). Sorption characteristics of nitrosodiphenylamine (NDPhA) and diphenylamine (DPhA) onto organo- bentonite from aqueous solution. Chem Eng J, 240, 487–493.
  • Bors, J., Dultz, S. ve Riebe, B. (2000). Organophilic bentonites as adsorbents for radionuclides I. Adsorption of ionic fission products. Appl Clay Sci, 16, 1–13.
  • Riebe, B., Dultz, S. ve Bunnenberg, C. (2005). Temperature effects on iodine adsorption on organo- clay minerals I. influence of pretreatment and adsorption temperature. Appl Clay Sci, 28, 9-16.
  • Shakir, K., Ghoneimy, H.F., Hennawy, I.T., Elkafrawy, A.F., Beheir, S.G.E. ve Refaat, M. (2011). Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo◦ bentonite. Eur J Chem, 2, 1, 83◦93.
  • Li, D., Kaplan, D.I., Knox, A.S., Crapse, K.P. ve Diprete D.P. (2014). Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents. J Environ Radioactiv, 136, 56-63.
  • Milutinovi◦-Nikoli◦, A., Maksin, D., Jovi◦-Jovi◦i◦, N., Mirkovi◦, M. Stankovi◦, D., Mojovi◦, Z. ve Bankovi, P. (2014). Removal of 99Tc(VII) by organo-modified bentonite.Appl Clay Sci, 95, 294–302.
  • Fan, H.,Zhou, L., Jiang, X., Huang, Q. ve Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Appl Clay Sci, 95, 150–158.
  • He, H., Frost R.L. ve Zhu, J. (2004). Infrared study of HDTMA+ intercalated montmorillonite. Spectrochim Acta A, 60, 2853–2859.
  • Ruiz-Hitzky E. ve Van Meerbeek A., (2006). Clay Mineral– and Organoclay–Polymer Nanocomposite. In: Developments in Clay Science, Handbook of Clay Science, Bergaya, F., Theng B. K.G. ve Lagaly G. (eds.), Elsevier, Amsterdam, 1, 583-621.
  • Murray, H.H., (2006). Applied Clay Mineralogy- Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays, Developments in Clay Science, Elsevier, Amsterdam, 2,111-130.
  • Park, S.J., Seo, D.I. ve Lee, J.R. (2002). Surface modification of montmorillonite on surface acid–base characteristics of clay and thermal stability of epoxy/clay nanocomposites. J Colloid Interf Sci, 251, 160–165.
  • Baldassari, S., Komarneni, S., Mariani, E. ve Villa, C. (2006). Microwave versus conventional preparation of organoclays from natural and synthetic clays. Appl Clay Sci, 31, 134–141.
  • Tasdelen M.A., Kreutzer J. ve Yagci Y. (2010). In situ synthesis of polymer/clay nanocomposites by living and controlled/living polymerization. Macromol Chem Physic, 211, No 3, 279–285.
  • Paiva L.B., Morales A.R. ve Díaz F.R.V. (2008). Organoclays: Properties, preparation and applications, Appl Clay Sci, 42, 8-24.
  • Tiwari R.R., Khilar K.C. ve Natarajan U. (2008). Synthesis and characterization of novel organo montmorillonites. Appl Clay Sci, 38, 203–208.
  • Jankovi◦, L., Madejová, J., Komadel, P., Jochec- Mo◦ková , D. ve Chodák I. (2011). Characterization of systematically selected organo-montmorillonites for polymer nanocomposites. Appl Clay Sci, 51, 438–444.
  • Lee, S.Y. ve Kim, S.J. (2002). Delamination behavior of silicate layers by adsorption of cationic surfactants. J Colloid Interf Sci, 248, 231–238.
  • Dultz, S., Riebe, B. ve Bunnenberg, C. (2005). Temperature effects on iodine adsorption on organo- clay minerals II. Structural effects. Appl Clay Sci, 28, 17– 30.
  • Yu, X., Wei, C., Ke, L., Hu, Y., Xie, X. ve Wu, H. (2010). Development of organovermiculite-based adsorbent for removing anionic dye from aqueous solution. J Hazard Mater, 180, 1, 499-507.
  • Yapar S., Özbudak V., Dias A. ve Lopes A. (2005). Effect of adsorbent concentration to the adsorption of phenol on hexadecyl trimethyl ammonium-bentonite. J Hazard Mater, 121, 1-3, 135–139.
  • Erdem A.R. ve Uyanık N. (2009). Mikrodalga ile kürleştirilen epoksi nanokompozitlerin polidimetil siloksan ile modifikasyonu. İTÜ Dergisi/C Fen Bilimleri, 7, 1, 67-76.
  • Majdan, M., Maryuk, O., Gladysz-Plaska, A., Pikus, S. ve Kwiatkowski, R. (2008). Spektral characteristics of the bentonite loaded with benzyldimethyloctadecyl- ammonium chloride, hexadecyltrimethyl-ammonium bromide and dimethyldiocta-decylammonium bromide. J Mol Struct, 874, 101–107.
  • Feng, X., Hu, G., Meng, X., Ding, Y., Zhang, S. ve Yang, M. (2009). Influence of ethanol addition on the modification of montmorillonite by hexadecyl trimethylammonium bromide. Appl Clay Sci, 45, 239–243.
  • Akçay, M. (2006). Characterization and adsorption properties of tetrabutylammonium montmorillonite (TBAM) Clay: Thermodynamic and kinetic calculations. J Colloid Interf Sci, 296, 16–21.
  • Kozak, M. ve Domka, L. (2004). Adsorption of the quaternary ammonium salts on montmorillonite. J Phys Chem Solids, 65, 441–445.
  • Yüzer, H., Sarıoğlan, Ş., Koral, M., Doğan, H., Çelik, M.S. ve Karahan, S. (2007). Reşadiye bentonitinden solvent bazlı bentonit üretim prosesinin geliştirilmesi. XIII. Kil Sempozyumu Bildiriler Kitabı, Isparta, 195- 202, 12-14 Eylül.
  • Yapar, S. (2009). Physicochemical Study of microwave- synthesized organoclays, Colloid Surface A, 345, 75– 81.
  • Behnsen J. ve Riebe B. (2008). Anion selectivity of organo-bentonites. App Geochem, 23, 2746–2752.
  • Wang, C., Juang , L., Lee, C., Hsu, T., Lee, J. ve Chao, H., (2004). Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. J Colloid Interf Sci, 280, 27–35.
  • Lee, S.Y., Cho, W.J., Kim, K.J., Ahn, J.H. ve Lee, M. (2005). Interaction between cationic surfactants and montmorillonites under nonequilibrium condition. J Colloid Interf Sci, 284, 667–673.
  • Bors, J., Patzko, A. ve Dekany, I. (2001). Adsorption behavior of radioiodides in hexadecylpyridinium– humate complexes. Appl Clay Sci, 19, 27–37.
  • Özcan, A., Ömeroğlu, Ç., Erdoğan, Y. ve Özcan, A.S. (2007). Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19. J Hazard Mater, 140 173–179.
  • Oral, A., Tasdelen, M.A., Demirel, A.L. ve Yagci, Y. (2009). Poly(cyclohexene oxide)/clay nanocomposites by photoinitiated cationic polymerization via activated monomer mechanism. J Polym Sci A1, 47, 20, 5328- 5335.
  • Ghiaci, M., Kalbasi, R.J., Khani, H., Abbaspur, A. ve Shariatmadari, H. (2004). Free-energy of adsorption of a cationic surfactant onto Na-bentonite (Iran): Inspection of adsorption layer by X-Ray spectroscopy. J Cheml Thermodyn, 36, 707–713.
  • Ho, Y.S. (2006). Review of second-order models for adsorption systems. J Hazard Mater, B136, 681–689.
  • Kuo, C.Y., Wu, C.H. ve Wu, J.Y. (2008). Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interf Sci, 327, 308–315.
  • Long, H., Wu, P., Zhu, N. (2013). Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite, Chem Eng J, 225, 237-244.
  • Riebe B., Bors, J. ve Dultz, S. (2001). Retardation capacity of organophilic bentonite for anionic fission products. J Contam Hydrol, 47, 255–264.
  • Lee, J., Choi, J. ve Park, J. (2002). Simultaneous sorption of lead and chlorobenzene by organo-bentonite. Chemosphere, 49, 1309–1315.
  • Vidal, N.C., Volzone, C. (2009), Analysis of tetramethylammonium–montmorillonite and retention of toluene from aqueous solution, Appl Clay Sci, 45, 4, 227-231.
  • Bhattacharyya, K.G., Gupta, S.S., (2009). Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe(II), Co(II) and Ni(II) from solution, Appl Clay Sci, 46, 2, 216-221.
  • Xi, Y., Mallavarapu, M., Naidu, R., (2010) Preparation, characterization of surfactants modified clay minerals and nitrate adsorption, Appl Clay Sci, 48, 1-2, 92-96.
  • Majdan, M.,Pikus, S., Gajowiak, A.,Sternik, D., Zięba, E., Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide, J Hazard Mater, 184, 1-3. 662-670.
  • Zhu, R., Wang, T., Zhu, J., Ge, F., Yuan, P., He, H. (2010) Structural and sorptive characteristics of the cetyltrimethylammonium and polyacrylamide modified bentonite, Chem Eng J, 160, 1, 220-225.
  • Chitrakar, R., Makita, Y., Sonoda, A., Hirotsu, T. (2011). Adsorption of trace levels of bromate from aqueous solution by organo-montmorillonite, Appl Clay Sci, 51, 3, 375-379.
  • Guo , J., Chen, S., Liu, L., Li, B., Yang, P., Zhang, L., Feng, Y., (2012). Adsorption of dye from wastewater using chitosan–CTAB modified bentonites, J Colloid Interf Sci, 382, 1, 61–66.
  • Liu, N., Wang, M.X., Liu, M.M., F., Liu, Weng, L., Koopal, L.K.,Tan, W.F., (2012). Sorption of tetracycline on organo-montmorillonites, J Hazard Mater, 225-226, 28-35.
  • Zha, S., Zhou, Y., Jin, X., Chen, Z., (2013). The removal of amoxicillin from wastewater using organobentonite, Journal of Environmental Management, 129, 569–576.
  • Jing, P., Hou, M., Zhao, P., Tang, X., Wan, H., (2013). Adsorption of 2-mercaptobenzothiazole from aqueous solution by organo-bentonite, Journal of Environmental Sciences, 25, 6, 1139–1144.
  • Yang, S., Gao, M., Luo, Z., Yang, Q. (2015).The characterization of organo-montmorillonite modified with a novel aromatic-containing gemini surfactant and its comparative adsorption for 2-naphthol and phenol, Chemical Engineering Journal, 268, 125–134.
  • Kameda , T., Shimamori, S., Yoshioka, T., (2015). Equilibrium studies of the uptake of aromatic compounds from an aqueous solution by montmorillonite modified amyltriphenylphosphonium, Journal of Alloys and Compounds, 625, 8–12. and