Mono-Blok Tipte Bir Doğal Gaz Yakıcının Sayısal Analizi ve Deneysel

Fosil yakıtlar halen enerji üretiminin en önemli ana kaynaklarıdır. Enerji üretiminde, özellikle endüstriyel ölçekte uygulamalarda kullanılan yakıtlar büyük oranda gaz, sıvı veya katı fazlarda bulunan hidrokarbonlardır. Gaz fazındaki fosil yakıtların yanmasında, diğer bazı emisyonların yanı sıra çevre kirliliğinin ana şüpheli olarak nitelendirilen karbon monoksit ve nitrik oksit de üretilmektedir. Bu çalışmada, endüstriyel ölçekte bir gaz yakıcısının akış alanı ve emisyon istatistikleri sayısal olarak incelenmiştir. Yakıcı ve buna bağlı yanma odası Ansys-Fluent yazılımı kullanılarak modellenmiştir. Gaz yakıcılarının gaz emisyonları için tanımlanan TSE EN 676:2000 Class-3 standardı göz önünde bulundurulmuştur. Bu standartta yer alan en önemli salımlardan birisi olan NOx seviyesi, ki 80 mg/kWh'den az olacak şekilde sınırlandırılmıştır, öncelikle varolan sonrasında ise iyileştirilen yakıcı tasarımları için hesaplanmıştır. Hız ve sıcaklık alan değerleri hesaplanmış ve kontur grafikleri olarak çizdirilmiştir. Salım sonuçları yanma odası çıkışında toplanmıştır ve ayrıca yanma odası duvar sıcaklıkları hesaplanmıştır. Sayısal model sonuçları firma bünyesinde var olan deneysel ölçe imkanları ile elde edilen verilerle doğrulanmıştır.
Anahtar Kelimeler:

Yanma, NOx, HAD, Yakıcı, Doğal Gaz

Numerical Analysis and Experimental Validation of a Mono-block Natural Gas Burner

Fossil fuels are still one the major sources of the energy production. Fuels, utilized in the power generation, especially in industrial scale applications, are almost hydrocarbons in gaseous, liquid or solid phases. In combustion of gaseous fossil fuels, besides the several other emissions carbon monoxide and nitric oxide which are identified as the main suspects of the environmental pollution are produced. In this study, the flow field and the emission statistics of an industrial scale gas burner was investigated numerically. The burner and the assembled combustion chamber have been modelled using ANSYS-Fluent software. The standards for flue gas emissions of gas burners defined in TSE EN 676:2000 Class-3 have been taken into account. One of the most important emission of NOx level given in that standard, limited to be less than 80 mg/kWh,  has been initially computed for the existing burner and then for the modified burner designs.  Both the velocity and temperature fields are calculated and represented in terms of contour plots. The emission results are collected at the exit of the combustion chamber and the chamber wall temperatures have been also computed. The numerical model results were validated with the available experimental measurements obtained from on-site test facilities.

___

  • [1] Charles, E.B., (2013). The John Zink Hamworthy Combustion Handbook Fundamentals Vol.1, 2nd Edition, CRC Press, Oklahoma.
  • [2] McAllister, S., Chen, J., Fernandez-Pello, A.C., (2011). Fundamentals of Combustion Proceses, 1st Edition, Springer, New York.
  • [3] Strehlow R.A., (1993). Combustion Fundamentals, 1st Edition, Krieger Pub Co.
  • [4] Basu, P., Kefa C., Jestin, L. (2000). Boilers and Burners Design and Theory, 1st Edition, Springer, New York.
  • [5] Poinsot, T., Veynante, D., (2001). Theoretical and Numerical Combustion, 1st Edition, Edwards, Philadelphia
  • [6] Ansys Inc. (2016). Fluent Combustion Training Notes, 1st Edition, Ansys Inc., Canonsburg
  • [7] Standart EN 67 (2008) Automatic Forced Draught Burners for Gaseous Fuels.
  • [8] Sarlej, M., Petr, P., Hajek, J., Stehlik, P. (2007). Computational Support in Experimental Burner Design Optimisation. Applied Thermal Engineering 27, 2727–2731.
  • [9] Chacon J., Sala J.M., Blanco J.M., (2007). Investigation on the Design and Optimization of a Low NOx-CO Emission Burner Both Experimentally and through Computational Fluid Dynamics (CFD) Simulations, Energy&Fuels, 21, 42-58.
  • [10] Spangelo, O., (2004). Experimental and Theoretical Studies of a Low NOx Swirl Burner, PhD Thesis, The Norwegian University of Science and Technology, Norway.
  • [11] Saripalli, R., (2004). Simulation of Combustion and Thermal Flow Inside an Industrial Boiler, PhD Thesis, University of New Orleans, USA.
  • [12] Khanafer, K., Aithal, S.M., (2011). Fluid-dynamic and NOx Computation in Swirl Burners, International Journal of Heat and Mass Transfer 54, 5030-5038.
  • [13] Natural Gas Density Calculator, http://www.unitrove.com/engineering/tools/gas/natural-gas-density.
  • [14] Natural Gas Calorific Value Calculator, http://www.unitrove.com/engineering/tools/gas/ natural-gas-calorific-value.