Metallerin Patlayıcı Yardımı İle Kaynatılması

Patlayıcı yardımı ile kaynak, bir patlayıcının patlamasıyla farklı malzemelerin (bazen aynı malzemelerin) birleştirilmesinde kullanılan bir katı hal prosesidir. Patlama neticesinde açığa çıkan enerji, uçucu plakanın ana plakaya “soğuk” kaynatılmasında kullanılır. Geleneksel kaynak yöntemleri ile birleştirilmeleri mümkün olmayan çok büyük parçaların tek seferde ve kabul edilebilir kalitede kaynatılması bu teknolojiyi modern üretim yöntemleri arasında vazgeçilmez kılmaktadır. Bu çalışmada patlayıcı yardımı ile kaynak teknolojisindeki teknolojik gelişmeler açıklanacak ve muhtemel ileriki uygulamalardan bahsedilecektir.

Explosive Welding Of Metals

Explosive welding is a solid-state process in which dissimilar (sometimes similar) materials are bond together via the detonation of an explosive. The energy from explosion is used to “cold” weld a flyer plate to base plate. The unique feature of this process about welding dissimilar very large parts that cannot be weld with conventional fusion welding processes in a single operation with admissible quality makes it indispensible in modern production industry. This paper reviews the technological developments in explosive welding and gives the possible future implementation of this process.

___

  • Blatter, A. ve Peguiron, D.A. (1998). Explosive joining of precious metals. Gold Bulletin, 31(3), 93-98.
  • Fındık, F. (2011). Recent developments in explosive welding. Materials and Design, 32, 1081–1093.
  • Young, G. (2004). Explosion Welding, Technical Growth and Commercial History. Dynamic Materials Corporation. http://www.dynamicmaterials.com/data/brochures/1- %20Young%20Paper%20on%20EXW%20History.pdf, (January 2012).
  • Fan, Y., Tysoe, B., Sim, J., Mirkhani, K., Sinclair, A.N., Honarvar, F., Sildva, H., Szecket, A. ve Hardwick, R. (2003). Nondestructive evaluation of explosively welded clad rods by resonance acoustic spectroscopy. Ultrasonics, 41(5), 369–375.
  • Kahraman, N., Gülenç, B. ve Fındık, F. (2005). Joining of titanium/stainless steel by explosive welding and effect on interface. Journal of Materials Processing Technology, 169, 127–133.
  • Durgutlu, A., Gülenç, B. ve Findik, F. (2005). Examination of copper/stainless steel joints formed by explosive welding. Materials and Design, 26, 497–507.
  • Cole, R. H. (1948). Underwater Explosions, Princeton University Press, Oxford, s. 3-147.
  • Acarer, M. ve Gülenç, B. (2003). Cladding of high Mn steel on low C steel by explosive welding. Turkish Journal of Engineering and Environmental Sciences, 27, 431–434.
  • Mousavi, S.A.A., Barrett, L.M. ve Al-Hassanib, S.T.S. (2008). Explosive welding of metal plates. Journal of Materials Processing Technology, 202, 224–239.
  • Banker, J. ve Reineke, E. (1993). Explosion Welding. ASM Handbook, Welding Brazing and Soldering, 6, 303-305.
  • Kahraman, N. ve Gülenç, B. (2005). Microstructural and mechanical properties of Cu– Ti plates bonded through explosive welding process. Journal of Materials Processing Technology, 169, 67–71.
  • Nobelclad, A. N., Masri, T. ve Lafont, M. C. (1999). Recent Developments in Characterization of a Titanium-Steel Bond Interface. Proceedings of Reactive Metals in Corrosive Applications Conference, Wah Chang, s. 89-98.
  • Lysak, V.I. ve Kuzmin, S.V. (2012). Lower boundary in metal explosive welding. Evolution of ideas. Journal of Materials Processing Technology, 212, 150–156.
  • Manikandan, P., Hokamoto, K., Fujita, M., Raghukandan, K. Ve Tomoshige, R. (2008). Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel. Journal of Materials Processing Technology, 195, 232–240.
  • Berdychenko, A.A., Zlobin, B.S., Pervukhin, L.B. ve Shtertser, A.A. (2003). Possible ignition of particles ejected into the gap in explosive welding of titanium. Combustion, Explosion, and Shock Waves, 39(2), 232-239.
  • Gupta, R. C. ve Kainth, G. S. (1990). Swinging wake mechanism for interface wave generation in explosive welding of metals. Journal of Applied Mechanics, 57, 514-521.
  • Ghomi, M.T. (2009). Impact wave process modeling and optimization in high energy rate explosive welding. Licentiate Theses, School of Sustainable Development of Society and Technology, Mälardalen University, Västerås, Sweden, s. 17-29.
  • Hokamoto, K., Shimokawa, H. ve Okugawa, H. (1999). A new method for explosive welding of Al/ZrO2 joint using regulated underwater shock wave. Journal of Materials Processing Technology, 85, 175–179.
  • Chizari, M., Al-Hassani, S.T.S. ve Barrett, L.M. (2009). Effect of flyer shape on the bonding criteria in impact welding of plates. Journal of Materials Processing Technology, 209, 445–454.
  • Kahraman, N., Gülenç, B. ve Fındık, F. (2007). Corrosion and mechanical- microstructural aspects of dissimilar joints of Ti–6Al–4V and Al plates. International Journal of Impact Engineering, 34, 1423–1432.
  • Rinehart, J. S. ve Pearson, J. (1963). Explosive Working of Metals. Pergamon Press, Oxford, s. 3-341.
  • Andreevskikh, L.A., Dendenkov, Y.P., Drennov, O.B., Mikhailov, A.L., Titova, N.N. ve Deribas, A.A. (2011). Explosive mixture for explosive welding of thin foils. Propellants, Explosives, Pyrotechnics, 36(1), 48-50.
  • Andreevskikh, L.A., Dendenkov, Y.P., Drennov, O.B., Mikhailov, A.L., Titova, N.N. ve Deribas, A.A. (2011). Explosive mixture for explosive welding of thin foils-part 2. Propellants, Explosives, Pyrotechnics, 36(5), 430-432.
  • Bruno, E. J. (1968). High-Velocity Forming of Metals. American Society of Tool and Manufacturing Engineers, Michigan University, s. 3-153.
  • Blazynski, T. Z. (1990). Simulation of explosive welding parameters by means of a liquid analogue. Materialwissenschaft und Werkstofftechnik, 21, 16-27.
  • Chemin, C. ve Qingming, T. (1989). Mechanism of wave formation at the interface in explosive welding. Acta Mechanica Sinica, 5(2), 97-108.
  • Balasubramanian, V., Rathinasabapathi, M. ve Raghukandan, K. (1997). Modelling of process parameters in explosive cladding of mildsteel and aluminium. Journal of Materials Processing Technology, 63, 83–88.
  • Raghukandan, K., Rathinasabapathi, M. ve Vaidyanathan, P.V. (1998). Modelling of process parameters in dynamic form-cladding. Metals and Materials, 4(5), 1057-1061.
  • Raghukandan, K. (2003). Analysis of the explosive cladding of cu–low carbon steel plates. Journal of Materials Processing Technology, 139, 573–577.
  • Yan, H. H., Qu, Y. D. ve Li, X. J. (2008). Explosive welding of multilayer amorphous ribbons. Combustion, Explosion and Shock Waves, 44(4), 491–496.
  • Yan, H.H. ve Li, X.J. (2008). Strain rate distribution near welding interface for different collision angles in explosive welding. International Journal of Impact Engineering, 35, 3–9.
  • Qu, Y.D. (2011). Temperature distribution across the explosive welding interface. Combustion, Explosion, and Shock Waves, 47(1), 123–127.
  • Abe, A. (1999). Numerical simulation of the plastic flow field near the bonding surface of explosive welding, Journal of Materials Processing Technology, 85, 162–165.
  • Mousavi, A.A.A., Burle, S.J., Al-Hassani, S. T. S. ve Brown, W.B. (2004). Simulation of explosive welding with ANFO mixtures. Propellants, Explosives, Pyrotechnics, 29(3), 188-196.
  • Mousavi, A. A. , Burley, S.J. ve Al-Hassani, S.T.S. (2005). Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives. International Journal of Impact Engineering, 31, 719–734.
  • Mousavi, A. A. ve Al-Hassani, S.T.S. (2005). Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding. Journal of the Mechanics and Physics of Solids, 53, 2501–2528.
  • Mousavi, A. A. ve Al-Hassani, S.T.S. (2008). Finite element simulation of explosively-driven plate impact with application to explosive welding. Materials and Design, 29, 1–19.
  • Chizari, M. ve Barrett, L.M. (2009). Single and double plate impact welding: Experimental and numerical simulation. Computational Materials Science, 46, 828–833.
  • Wang, Y., Beom, H.G., Sun, M. ve Lin, S. (2011). Numerical simulation of explosive welding using the material point method. International Journal of Impact Engineering, 38, 51-60.
  • Gulbin, V.N., Kobelev, A.G. ve Borissov, D.E. (1997). Thermobimetals mechanical properties produced by explosive welding with Rolling. Journal De Physique IV France, 7, 49-54.
  • Buchar, J., Rolc, S. ve Hruby, V. (1999). On the explosive welding of a ring to the axisymmetric body. Journal of Materials Processing Technology, 85, 171–174.
  • Gerland, M., Presles, H.N., Guin, J.P. ve Berteau, D. (2000). Explosive cladding of a thin Ni-film to an aluminium alloy. Materials Science and Engineering A, 280, 311–319.
  • Elmer, J. W., Terrill P., Brasher, D. ve Butler, D. (2002). Joining depleted uranium to high-strength aluminum using an explosively clad niobium interlayer. Welding Journal, 81(8), 167-173.
  • Kosec, B., Kosec, L., Petrovic, S., Gontarev, V., Kosec, G., Gojic, M. ve Skraba, P. (2003). Analysis of low carbon steel/tantalum interface after explosive welding. Metalurgija, 42(3), 147-151.
  • Han, J.H., Ahn, J.P. ve Shin, M.C. (2003). Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding. Journal of Material Sciences, 38, 13–18.
  • Acarer, M., Gülenç, B. ve Findik, F. (2003). Investigation of explosive welding parameters and their effects on microhardness and shear strength. Materials and Design, 24, 659–664.
  • Kaçar, R. ve Acarer, M. (2003). Microstructure–property relationship in explosively welded duplex stainless steel–steel. Materials Science and Engineering A, 363, 290–296.
  • Mudali, U.K., Rao, B.M.A., Shanmugam, K., Natarajan, R. ve Raj, B. (2003). Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel. Journal of Nuclear Materials, 321, 40–48.
  • Acarer, M., Gülenç, B. ve Findik, F. (2004). The influence of some factors on steel/steel bonding quality on there characteristics of explosive welding joints. Journal of Material Sciences, 39, 6457–6466.
  • Grignon, F., Benson, D., Vecchio, K.S. ve Meyers, M.A. (2004). Explosive welding of aluminum to aluminum:analysis, computations and experiments. International Journal of Impact Engineering, 30, 1333–1351.
  • Kacar, R. ve Acarer, M. (2004). An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel. Journal of Materials Processing Technology, 152, 91– 96.
  • Mousavi, A.A.A. ve Joodaki, G. (2005). Explosive welding simulation of multilayer tubes. VIII International Conference on Computational Plasticity, Barcelona.
  • Palmer, T.A., Elmer, J.W., Brasher, D., Buttler, D. ve Riddle, R. (2006). Development of an explosive welding process for producing high-strength welds between niobium and 6061-T651 aluminum. Welding Journal, November, 252-263.
  • Berski, S., Stradomski, Z. ve Dyja, H. (2007). Quality of bimetal Al-Cu joint after explosive cladding. Journal of Achievements in Materials and Manufacturing Engineering, 22(1), 73-76.
  • Zhu, Y., Li-shan, C. ve Yan-jun, Z. (2007). Microstructure and martensitic transformation behaviors of explosively welded NiTi/NiTi laminates. Chinese Journal of Aeronautics, 20, 168-171.
  • Gülenç, B. (2008). Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method. Materials and Design, 29, 275–278.
  • Acarer, M. ve Demir, B. (2008). An investigation of mechanical and metallurgical properties of explosive welded aluminum–dual phase steel. Materials Letters, 62, 4158– 4160.
  • Durgutlu, A., Okuyucu, H., Gülenç, B. Ve Fındık, F. (2008). Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel. Materials and Design, 29, 1480–1484.
  • Minev, R.M., Dimov, S.S., Koev, S.R., Laley, G. ve Festchiev, N.H. (2008). Explosive welding of Ni- based amorphous foils for micro-tooling applications. 4M's Annual Conference on Multi-Material Micro Manufacture.
  • Mousavi, A. A. , Al-Hassani, S.T.S. ve Atkins, A. G. (2008). Bond strength of explosively welded specimens. Materials and Design, 29, 1334–1352.
  • Mousavi, A. A. ve Sartangi, P.F. (2009). Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Materials and Design, 30, 459–468.
  • Gong, S., Li, Z., Xiao, Z. ve Zheng, F. (2009). Microstructure and property of the composite laminate cladded by explosive welding of CuAlMn shape memory alloy and QBe2 alloy. Materials and Design, 30, 1404-1408.
  • Ting-yong, X., Yan-jun, Z., Li-shan, C. ve Xu-jun, M. (2009). Influence of aging on damping behavior of TiNi/TiNi alloys synthesized by explosive welding. Transactions of Nonferrous Metals Society of China, 19, 1470-1473.
  • Hokamoto, K., Nakata, K., Mori, A., Tsuda, S, Tsumura, T. ve Inoue, A. (2009). Dissimilar material welding of rapidly solidified foil and stainless steel plate using underwater explosive welding technique. Journal of Alloys and Compounds, 472, 507– 511.
  • Liu, W.D., Liu, K.X., Chen, Q.Y., Wang, J.T., Yan, H.H. ve Li, X.J. (2009). Metallic glass coating on metals plate by adjusted explosive welding technique. Applied Surface Science, 255, 9343–9347.
  • Ashani, J. Z. ve Bagheri, S. M. (2009). Explosive scarf welding of aluminum to copper plates and their interface properties. Materialwissenschaft und Werkstofftechnik, 40(9) 690-698.
  • Yan, Y.B., Zhang, Z.W., Shen, W., Wang, J.H., Zhang, L.K. ve Chin, B.A. (2010). Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate. Materials Science and Engineering A, 527, 2241–2245.
  • Benák, M., Turňa, M., Ožvold, M., Nesvadba, P., Lokaj, L., Čaplovıč, L., Kováč, F. ve Stoyka, V. (2010). Study of Al-austenitic steel boundary formed by explosion welding. 19th International Conference on Metallurgy and Material, 18-20 May, Czech Republic.
  • Findik, F., Yılmaz, R. ve Somyurek, T. (2011). The effects of heat treatment on the microstructure and microhardness of explosive welding. Scientific Research and Essays, 6(19), 4141-4151.
  • Xian-jun, S., Jie, T. ve Xun-zhong, G. (2011). Bonding properties of interface in Fe/Al clad tube prepared by explosive welding. Transactions of Nonferrous Metals Society of China, 21, 2175-2180.
  • Alipour, R. ve Najarian, F. (2011). A FEM study of explosive welding of double layer tubes. World Academy of Science, Engineering and Technology, 73, 954-956.
  • Samardzıc, I., Matesa, B. ve Kladarıc, I. (2011). The influence of heat treatment on properties of three-metal explosion joint: AlMg-Al-Steel. Metalurgija, 50(3), 159-162.
  • Zhang, Y., Babu, S.S., Prothe, C., Blackely, M., Kwasegroch, J., Laha, M. ve Daehn, G. (2011). Application of high velocity impact welding at varied different length scales. Journal of Materials Processing Technology, 211, 944–952.
  • Ostroushko, D. ve Mazancová, E. (2011). Chosen properties of sandwich material Ti- 304 stainless steel after explosive welding. Materials Engineering, 18, 8-10.
  • Ostroushko, D., ve Mazancová, E. (2010). Chosen properties of sandwich CrNi steel- Ti material after explosive cladding. 19th International Conference on Metallurgy and Material, 18-20 May, Czech Republic.
  • Ghizdavu, V. (2011). Explosive welding of copper to steel. International Conference Of Scientific Paper Afases, 26-28 May, Brasov.
  • Manikandan, P., Lee, J.O., Mizumachi, K., Mori, A., Raghukandan, K. ve Hokamoto, K. (2011). Underwater explosive welding of thin tungsten foils and copper. Journal of Nuclear Materials, 418(1-3), 281-285.
  • Song, J., Kostka, A., Veehmayer, M. ve Raabe, D. (2011). Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Materials Science and Engineering A, 528(6), 2641–2647.
  • Ghomi, M.T., Mahmoudi, J. ve Liaghat, G. (2011). Removing leakage from oil and gas low pressure pipes by explosive welding method. Journal of Petroleum and Gas Exploration Research, 1(1), 34-42.