İndüksiyon Bobin Tasarımında Kullanılan İletken Türlerinin İndüksiyon Sıvı Isıtıcı Performansına Etkilerinin Araştırılması

Sahip olduğu bazı üstünlükler dolayısıyla, indüksiyon prensibiyle sıvı ısıtma sitemlerinin endüstriyel ve evsel kullanımı giderek artmaktadır. İndüksiyon sıvı ısıtma sistemlerinin en önemli unsurlarından biri indüksiyon bobinleridir. İndüksiyon bobinleri, rezonans durumunda en verimli çalıştıkları ve büyük akımlar taşıdıkları için, büyük kesitli iletkenlerden az sipirli sarılarak oluşturulurlar. Günümüzde, indüksiyon bobin tasarımında kullanılabilecek birçok iletken türü mevcuttur. Bu çalışmada, COMSOL® Multiphysics yazılımı kullanılarak, 8 farklı iletken türünden oluşturulan indüksiyon bobinlerinin 3B katı modelleri oluşturulmuş, eşit çevresel faktörler ve farklı çalışma frekansları için 2B manyetik ve termal analizleri gerçekleştirilmiş, ısıtıcı aparat üzerinde açığa ısıtma gücü hesaplanarak ısıtıcı performans testi yapılmıştır. Bu çalışma aynı zamanda tasarımcı ve üretici firmalara, indüksiyon bobin tasarımında kullanılabilecek iletken türü seçiminde yardımcı olmayı da amaçlamaktadır.

Investigating the Effects of Conductor Types of Induction Coil on Performance of the Induction Liquid Heater

In residential and industrial applications, the usage of induction liquid heater using induction heating principles is increasingly growing due to having some advantages. One of the components of the induction heating is induction coil. Because of working best at resonance condition and carrying a lot of current, induction coils are constituted from a wire having a big cross-sectional area; and also have a few turn. At present, there are a lot of wire types being used in induction coil design. In this study, by using the COMSOL® Multiphysics software, 3D solid models of a total of eight-induction-coil designed with different wire types are created; magnetic and thermal analysis of those are performed under identical environmental conditions for different working frequencies; and, performance tests of induction heaters are done by computing the heating-power on induction apparatus. This study, also, aims to help designer and manufacturer on choosing favorable wire type for induction coil design.

___

  • Fairchild Semiconductor Inc. (2000). Induction Heating System Topology Review, Application Note, AN-9012.
  • Rudnev, V.I. (2003), Handbook of Induction Heating, Marcel Dekker Inc..
  • Zinn, S., Semiatin, S.L. (2002). Elements of Induction Heating, Design, Control, and Application, Electric Power Research Institute, Inc.
  • Sadhu, P.K., Roy, D., Pal, N., (2015). Design and Implementation of High Frequency Inverter Operation for Induction Heating Cooking Application Using PSIM Software, Int. J. of Electronics & Communication Technology (IJECT), 6(1), 130-133.
  • Altıntaş, A., Yıldız, M.N., Kızılkaya, İ., (2012). İndüksiyon Isıtma Prensibi ile Çalışan Mikrokontrol Denetimli Bir Sıvı Isıtıcısı Tasarımı, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, Cilt 29, 45-52.
  • Al-Shaikhli, A.K.M., Meka, A.T., (2014). Design and Implementation of Practical Induction Heating Cooker, Int. J. of Soft Computing and Engineering (IJSCE), 4(4), 73-76.
  • Sarnago, H., Lucia, O., Mediano, A., Burdio, J.M., 2013. Modulation Scheme for Improved Operation of a RB-IGBT Based Resonant Inverter Applied to Domestic Induction Heating, IEEE Trans. on Industrial Electronics, 60(5), 2066- 2073.
  • Curran, J.S., Featherstone, A.M., (1988). Electric-Induction Fluid Heaters, Power Engineering Journal, 2(3), 157-160.
  • Kenada, M., Hishikawa, S., Tanaka, T., Guo, B., Nakaoka, M., (1999). Innovative Electromagnetic Induction Eddy Current-Based Dual Packs Heater Using Voltage-Fed High- Frequency PWM Resonant Inverter for Continuous Fluid Processing in Pipeline, IEEE Engineering Technologies, Vol.2, 797-802.
  • Nakamizo, T., Guo, B., Nakaoka, M., (1999). New Generation Electromagnetic Induction-Based Fluid-Heating Energy Processing Appliance Using Voltage-Fed PWM Resonant Inverter, Proceeding of PCIM-Tokyo, Japan, 597-607.
  • Sadakata, H., Nakaoka, M., Yamashita, H., Omori, H., Terai, H., (2002). Development of Induction Heated Hot Water Producer Using Soft Switching PWM High Frequency Inverter, IEEE, PCC-Osaka-2002, Vol.2, 452-455.
  • Nakamizo, T., Kenada, M., Hishikawa, S., Guo, B., Iwamoto, H., Nakaoka, M., (1999). New Generation Fluid Heating Appliance Using High Frequency Load Resonant Inverter, IEEE 1999 International Conference on Power Electronics and Drive Systems, PEDS’99, Hong Kong, Vol.1, 309-314, .
  • Zhang S.J., Yang Z.Q., Zhao Q.H., (2004). Electromagnetic Water Heater, U.S. Patent, No: 6674055.
  • Greis I., Ostlund A., (1984). Device for Heating Fluent Material Flowing Past Short-Circuited Heating, U.S. Patent, No: 4471191, Asea Ab.
  • G.J. Anders, (2011). Rating of Electric Power Cables, Ampacity Computations for Transmission, Distribution and Industrial Applications, IEEE Press Power Engineering Series, Mc-Graw Hill Comp.
  • Ahmed, T., Ogura, K., Chandhaket, S., Nakaoka, M., (2003). Asymmetrical Duty Cycle Controlled Edge Resonant Soft Switching High Frequency Inverter for Consumer Electromagnetic Induction Fluid Heater , Automatica, ATKAAF 44(1-2), 21-26.
  • Djellabi, K., Latreche, M.E.H., (2014). Induction Heating Process Design Using COMSOL® Multiphysics Software 4.2a , Int. J. of Electrical, Computer, Electronics and Communication Engineering, 8(1).
  • Istardi, D., Triwinarko, A., (2011). Induction Heating Process Design Using COMSOL® Multiphysics Software, Telkomnika, 9(2), 327-334.
  • http://www.dw-inductionheating.com/ induction%20 heating%20coil%20design.pdf, Dawei Induction Heating Machine Co.,Ltd (Erişim tarihi: 02.11.2015)
  • Iatcheva I., Gigov G., Kunav G., Stancheva R., (2012). Analysis of Induction Heating System for High Frequency Welding, Facta Universitatis, Elec. Energ., 25 (3), 183-191.
  • Sugimura H., Muraoka H., Ahmed T., Chandhaket S., Hiraki E., Nakaoka M., Lee H.W., (2004). Dual Mode Phase-Shifted ZVS-PWM Series Resonant High-Frequency Inverter for Induction Heating Super-Heated Steamer, Journal of Power Electronics, 4(3), 138-151.
  • Roßkopf A., Bär E., Joffe C., (2014). Influence of Inner Skin and Proximity Effects of Conduction in Litz Wires, IEEE Transactions on Power Electronics, 29(10).
  • Zimmerman, W.B.J., (2006). Multiphysics Modelling with Finite Element Methods, Series on Stability, World Scientific Pub., 432 p.
  • Pryor, R.W., (2011). Multiphysics Modelling using COMSOL: A first principles approach, Jones & Bartlett Pub., Mass., 852 p.
  • Ernest, R., Perrier, D., Feigenblum, J., Hemous, R., (2006). 3D Inductive Phenomena Modelling, In The Proceeding of the COMSOL Users conference, Paris, 81-86.