HIRHAM5 Kullanılarak Akdeniz Havzası’nın Gelecek Klimatolojisi ve Ekstrem Olaylarındaki Değişikliklerin Projeksiyonları

Bu çalışmada, 1971–2000 referans dönemine göre 2011-2100 gelecek dönemi için Türkiye'nin de dahil olduğu Akdeniz Havzası üzerinde sıcaklık ve yağış klimatolojilerinde öngörülen değişiklikler, EC-EARTH, HadGEM2-ES ve NorESM1-M olmak üzere üç küresel iklim modeli çıktılarıyla koşulan HIRHAM5 bölgesel iklim modeli benzetimleri kullanılarak değerlendirildi. Ekstrem iklim indekslerini hesaplamak için sıcaklık ve yağış değişkenlerinin günlük ortalamaları kullanıldı. Sonuçlara göre, artan ışınımsal zorlamayla birlikte yüzyıl boyunca sıcaklık ve yağış temelli ekstrem iklim indekslerinin daha şiddetlenmesi beklenmektedir. Minimum sıcaklıklardaki artış, iklim değişikliğinin en önemli sıcak noktalarından biri olması beklenen Akdeniz Havzası'nın kuzey kesiminde daha belirginken, maksimum sıcaklıklardaki artış ise karalar üzerinde ılımlıdır. Art arda gelen kurak günlerin sayısındaki artışla birlikte toplam yağışlı gün sayılarında azalma beklenmektedir. Bu nedenle, Akdeniz Havzası ve Türkiye üzerindeki mevcut iklim koşullarının daha yoğun ve daha sıcak olması öngörülmektedir.

Projections of Future Change of Climatology and Extreme Events in the Mediterranean Basin, by the HIRHAM5

In this work, change of temperature and precipitation climatology over Mediterranean Basin including Turkey were investigated using HIRHAM5 driven by global climate models such as EC-EARTH, HadGEM2-ES and NorESM1-M for 2011-2100 compared to 1971-2000. Daily mean temperature and precipitation fields are used to compute extreme indices. According to the results, severity of temperature- and precipitation-based indices will be expected to increase throughout the century with increasing radiative forcing. Minimum of minimum temperatures will increase more pronounced over northern Mediterranean, which is referred to climate change hot spots, whereas increase in maximum of maximum temperatures are moderate over land areas. Decrease in total wet-day precipitation is expected while number dry days is expected to increase. Therefore, Mediterranean Basin and Turkey will have warmer and drier conditions compared to present climate conditions.

___

  • Van Oldenborgh, G. J., Collins, M., Arblaster, J., Christensen, J. H., Marotzke, J., Power, S. B., ... and Zhou, T. 2103: Annex I: Atlas of global and regional climate projections. Climate Change 2013: The Physical Basis, TF Stocker et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Giorgi, F. (2006). Climate change hot‐spots. Geophys. Res. Lett., 33(8). L08707, https://doi.org/10.1029/2006GL025734.
  • Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., ... and Xoplaki, E. (2006). The Mediterranean climate: an overview of the main characteristics and issues. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean Climate Variability. Amsterdam, Elsevier, pp 1–26. https://doi.org/10.1016/S1571-9197(06)80003-0
  • Lionello, P., Abrantes, F., Congedi, L., Dulac, F., Gacic, M., Gomis, D., ... and Xoplaki, E. (2012). Introduction: mediterranean climate—background information. In The climate of the Mediterranean region: From the past to the future (pp. xxxv-xc). Elsevier Inc. ISBN: 9780124160422. https://doi.org/10.1016/ B978-0-12-416042-2.00012-4.
  • Giorgi, F., and Lionello, P. (2008). Climate change projections for the Mediterranean region. Glob. Planet. Chang., 63(2-3), 90-104. https:// doi.org/10.1016/j.gloplacha.2007.09.005
  • Diffenbaugh, N. S., and Giorgi, F. (2012). Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang., 114(3), 813-822. doi:10.1007/s10584-012-0570-x.
  • Lionello, P., and Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change, 18(5), 1481-1493.
  • Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., ... and Whetton, P. (2007). Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • Christensen, J. H., and Christensen, O. B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change, 81(1), 7-30.
  • Planton, S., Lionello, P., Artale, V., Aznar, R., Carrillo, A., Colin, J., ... and Tsimplis, M. (2012). The Climate of the Mediterranean Region in Future Climate Projections in The Climate of the Mediterranean Region. From the Past to the Future. From the Past to the Future. Elsevier (NETHERLANDS), projections, Amsterdam, pp 449–502. https:// doi.org/10.1016/B978-0-12-416042-2.00008-2.
  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., ... and Booth, B. B. (2013). Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1029-1136). Cambridge University Press.
  • Gualdi, S., Somot, S., May, W., Castellari, S., Déqué, M., Adani, M., ... and Xoplaki, E. (2013). Future climate projections. In Regional assessment of climate change in the Mediterranean(pp. 53-118). Springer, Dordrecht. https://doi.org/10. 1007/978-94-007-5781-3_3.
  • Dubrovský, M., Hayes, M., Duce, P., Trnka, M., Svoboda, M., and Zara, P. (2014). Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Reg. Environ. Change, 14(5), 1907-1919. doi:10.1007/s10113‐013‐0562‐z.
  • Mariotti, A., Pan, Y., Zeng, N., and Alessandri, A. (2015). Long-term climate change in the Mediterranean region in the midst of decadal variability. Climate Dyn., 44(5-6), 1437-1456. doi:https://doi.org/10.1007/s00382-015-2487-3.
  • Ozturk, T., Ceber, Z. P., Türkeş, M., and Kurnaz, M. L. (2015). Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology, 35(14), 4276-4292.
  • Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427(6972), 332-336.
  • Sánchez, E., Gallardo, C., Gaertner, M. A., Arribas, A., and Castro, M. (2004). Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change, 44(1-4), 163-180.
  • Diffenbaugh, N. S., Pal, J. S., Giorgi, F., and Gao, X. (2007). Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters, 34(11).
  • Goubanova, K., and Li, L. (2007). Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary Change, 57(1-2), 27-42.
  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., ... and Zhao, Z. C. (2007). Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Fischer, E. M., and Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature geoscience, 3(6), 398-403.
  • Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118(6), 2473-2493.
  • Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E., and Zittis, G. (2016). Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137(1), 245-260.
  • Zittis, G., Hadjinicolaou, P., Fnais, M., and Lelieveld, J. (2016). Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Regional environmental change, 16(7), 1863-1876.
  • Gao, X., and Giorgi, F. (2008). Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change, 62(3-4), 195-209.
  • Önol, B., and HM Semazzi, F. (2009). Regionalization of climate change simulations over the Eastern Mediterranean. Journal of Climate, 22(8), 1944-1961.
  • Bozkurt, D., and Sen, O. L. (2011). Precipitation in the Anatolian Peninsula: sensitivity to increased SSTs in the surrounding seas. Climate dynamics, 36(3-4), 711-726.
  • Bozkurt, D., Turuncoglu, U., Sen, O. L., Onol, B., and Dalfes, H. N. (2012). Downscaled simulations of the ECHAM5, CCSM3 and HadCM3 global models for the eastern Mediterranean–Black Sea region: evaluation of the reference period. Climate dynamics, 39(1), 207-225.
  • Önol, B. (2012). Effects of coastal topography on climate: high-resolution simulation with a regional climate model. Climate Research, 52, 159-174.
  • Ozturk, T., Altinsoy, H., Türkeș, M., and Kurnaz, M. L. (2012). Simulation of temperature and precipitation climatology for the Central Asia CORDEX domain using RegCM 4.0. Climate Research, 52, 63-76.
  • Önol, B., and Unal, Y. S. (2014). Assessment of climate change simulations over climate zones of Turkey. Regional Environmental Change, 14(5), 1921-1935.
  • Bozkurt, D., and Sen, O. L. (2013). Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. Journal of hydrology, 480, 149-161.
  • Önol, B., Bozkurt, D., Turuncoglu, U. U., Sen, O. L., and Dalfes, H. N. (2014). Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region. Climate dynamics, 42(7-8), 1949-1965.
  • Ozturk, T., Türkeş, M., and Kurnaz, M. L. (2014). Analysing projected changes in future air temperature and precipitation climatology of Turkey by using RegCM4.3.5 climate simulations. Aegean Geographical Journal, 20, 17-27.
  • Turp, M. T., Ozturk, T., Türkeş, M., and Kurnaz, M. L. (2014). Investigation of projected changes for near future air temperature and precipitation climatology of Turkey and surrounding regions by using the regional climate model RegCM4. 3.5. Aegean Geographical Journal, 23(1), 1-24.
  • Gürkan, H., Arabacı, H., Demircan, M., Eskioğlu, O., Şensoy, S., and Yazıcı, B. (2016). Temperature and precipitation projections based on GFDL-ESM2M using RCP4.5 and RCP8.5 scenarios for Turkey. Turkish Journal of Geographical Sciences, 14(2), 77- 88.
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., and Coşkun, M. (2017). Climate Change Projections for Turkey: Three Models and Two Scenarios. Turkish Journal Of Water Science and Management, 1(1), 22-43.
  • Ozturk, T., Turp, M. T., Türkeş, M., and Kurnaz, M. L. (2017). Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4. 3.5. Atmospheric Research, 183, 296-307.
  • Ozturk, T., Turp, M. T., Türkeş, M., and Kurnaz, M. L. (2018). Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4. 4. Atmospheric Research, 206, 87-107.
  • Oğuz, K., and Akın, B. S. (2018). Evaluation of temperature, precipitation and dust aerosol simulations for Turkey. International Journal of Current Research, 10, (09), 73225-73233.
  • Turkes, M., Turp, M. T., An, N., Ozturk, T., and Kurnaz, M. L. (2020). Impacts of climate change on precipitation climatology and variability in Turkey. In Water resources of Turkey (pp. 467-491). Springer, Cham.
  • Ozturk, T., Tufan Turp, M., Türkeș, M., and Kurnaz, M. L. (2017, April). Investigation of high-resolution climate projections over Turkey and its surrounding regions using RegCM4. 4. In EGU General Assembly Conference Abstracts (p. 8020).
  • Giorgi, F., Bates, G. T., and Nieman, S. J. (1993). The multiyear surface climatology of a regional atmospheric model over the western United States. Journal of Climate, 6(1), 75-95.
  • Giorgi, F., Marinucci, M.R.,and Bates, G.T. (1993). Development of a second generation region- al climate model (regcm2) boundary layer and radiative transfer processes. Mon. Weather Rev, 121, 2794–2813.
  • Box, J. E., and Rinke, A. (2003). Evaluation of Greenland ice sheet surface climate in the HIRHAM regional climate model using automatic weather station data. Journal of Climate, 16(9), 1302-1319.
  • Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A., Frei, C., Goyette, S., ... and Woth, K. (2007). Future extreme events in European climate: an exploration of regional climate model projections. Climatic change, 81(1), 71-95.
  • May, W. (2008). Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Climate Dynamics, 30(6), 581-603.
  • Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas‐Picher, P. (2008). On the need for bias correction of regional climate change projections of temperature and precipitation. Geophysical Research Letters, 35(20).
  • Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., ... and Wulfmeyer, V. (2014). Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development, 7(4), 1297-1333.
  • Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J. A., Jones, C., Lenderlink, G., McDonald, A., McGrath, R., Navascues, B., Woetman Nielsen, N., Ødegaard, V., Rodrigues, E., Rummukainen, M., Rõõm, R., Sattler, K., Hansen Sass, B., Savijärvi, H., Wichers Schreur, B., Sigg, R., The, H., and Tijm, A. (2002). HIRLAM-5 Scientific Documentation. Scientific Report. http://hirlam.org.
  • Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A. (2003). The atmospheric general circulation model ECHAM5. Part 1. Model description. Report no. 349, Max-Planck-Institut für Meteorologie (MPI-M).
  • Christensen, O. B., Drews, M., Christensen, J. H., Dethloff, K., Ketelsen, K., Hebestadt, I., and Rinke, A. (2006). The HIRHAM regional climate model version 5 (β). Tech Rep 06-17, Danish Meteorological Institute, Copenhagen.
  • Simmons, A. S., Uppala, D. D., and Kobayashi, S. (2007). ERA-Interim: new ECMWF reanalysis products from 1989 onwards, ECMWF Newsl., 110, 29−35.
  • Mitchell, T.D. and Jones, P.D. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol, 25(6),693–712.
  • Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C.D., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Totterdell, I., Woodward, S., Reichler, T., and Kim, J. (2008). Evaluation of the HadGEM2 model. Met Office Hadley Centre Technical Note No. HCTN 74.
  • Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E. (2013). The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., ... and Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change, 109(1), 5-31.
  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., ... and Vazquez‐Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5).
  • Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, Climate data and monitoring WCDMP-No. 72, WMO-TD No. 1500, 56pp.
  • Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., ... and Zwiers, F. W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851-870.
  • Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press. Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324.
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

GENERAL ASSESSMENT OF PM10 AND SO2 IN AĞRI

Yiğitalp KARA, Mehmet ÇİVİCİ, Uygar KARTUM, Rosa Maria FLORES RANGEL

Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme

Bengisu BOZKURT, Zerrin GÜNKAYA, Aysun ÖZKAN, Göktuğ GÜNKAYA, Mufide BANAR

Bakır İzabe Curufu Flotasyon Atığından FeS2 İlaveli Asit Kavurma, Liç ve Manyetik Ayırma ile Baz Metal ve Manyetik Ürün Eldesinin Araştırılması

Elif UZUN KART

En Uygun Tersine Lojistik Hizmet Sağlayıcısının Bulanık Grup Karar Verme Yaklaşımı Altında Belirlenmesi

Tolga GEDİKLİ, Beyza ÇAYIR ERVURAL

Solution Proposals for Fires Occuring in the Lamination Units of Inline Lamination Machines

Hasan Uğur ÖNCEL, Emre RESULOĞLU

Marmara Denizi'nde Fanyalı Uzatma Ağlarına Yakalanan Kritik Tehlike Altındaki Domuz Köpek Balığının (Oxynotus centrina (Linnaeus, 1758) Bazı Morfometrik Özellikleri

Yusuf ŞEN, Uğur ÖZEKİNCİ

İNŞAAT SEKTÖRÜNDEKİ ERGONOMİK RİSKLERİN DEĞERLENDİRİLMESİ VE BİR UYGULAMA

Alp ZORLUTUNA, Hüseyin Selçuk KILIÇ

HIRHAM5 Kullanılarak Akdeniz Havzası’nın Gelecek Klimatolojisi ve Ekstrem Olaylarındaki Değişikliklerin Projeksiyonları

Tuğba ÖZTÜRK

Farklı Meteorolojik Değişkenlerin Ortalama Öngörü Sürelerini Belirlemek İçin Kaos Teorisinin Kullanımı: Sivas Örneği

Evren ÖZGÜR, Mustafa Utku YILMAZ

Kentsel Enerji Verimliliğinin Deterministik ve Stokastik Yöntemlerle Kıyaslanması

Zühre AYDIN YENİOĞLU, Züleyha Sara BELGE