Güney Marmara Bölgesinde Tarım Topraklarında Ağır Metal Kirliliğinin Araştırılması

Bu çalışmada; güney Marmara bölgesinde, tarım yapılan topraklarda bulunan ağır metaller araştırılmış, bu kapsamda bulunan ağır metal konsantrasyon değerlerinin yüksek olmasının sebepleri irdelenmiştir. Bu anlamda, bölgede fosforik asit üretimi esnasında yan ürün olarak açığa çıkan fosfojipsin depolanması ve taşınmasının oluşturabileceği çevresel etkilerin yanısıra, gübre maksadıyla kullanılmış olmasının üzerinde yoğunlaşılmıştır. Araştırma yapılan bölgeden rüzgarın taşınım yönüne bağlı olarak kirlenmenin taşınabileceği uzaklığı belirlemek amacıyla depolama sahasından gittikçe artan aralıklarla yaklaşık 15 km uzaklığa kadar 30 adet toprak numunesi alınmıştır. Alınan toprak numunelerindeki Fe, Mn, Ca, Cr, Na, Mg, Al, P, K, V, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb elementlerinin konsantrasyonları ICP-MS cihazında analiz edilmiştir. Toprak numuneleri, birbirlerine yakınlıkları ve rüzgar taşıma yönleri dikkate alınarak 9 gruba ayrılmıştır. Rüzgar taşıma yönünün dışında kalan 4 numuneyi içeren bölge şahit olarak seçilmiştir. Analizi yapılan 19 element arasında toprak kirlenmesine neden olan Cr, Cd, Ni, Cu, Zn gibi metallerin sırasıyla 395, 152, 181, 215, 263 mg/kg gibi yüksek konsantrasyonları, şahit bölge toprağı ile karşılaştırılarak farklılığın sebepleri açıklanmaya çalışılmıştır. 

Investigation of Heavy Metal Pollution on Agricultural Lands in the South of Marmara Region

This study explores the amount of heavy metals in the agricultural lands around the south of Marmara Region and makes an assesment on the reasons for high level of heavy metal concentration in soil. In this sense, this study concentrates on the environmental impact of storage and transportation of phosphogypsum, which is revealed as a by-product of phosphoric acid production. Moreover, the use of phosphogypsum as a fertilizer has also taken into consideration. In order to find out the range of pollution, thirty different samples of soil were taken in sequences of varying up to 15 kms. The direction of the sequences were determined according to the wind and the intervals of the the sequences were widening from the initial to the ultimate points. The concentrations of certain elements (Fe, Mn, Ca, Cr, Na, Mg, Al, P, K, V, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb) in soil samples were analysed with ICP-MS. The soil samples were divided into nine different groups according to the wind direction and proximity. An area that covers four samples, which fell outside the direction of the wind, were selected as a reference. Among the 19 elements that cause to pollution, some metals (Cr, Cd, Ni, Cu, Zn) with high concentration (395, 152, 181, 215, 263 mg/kg, respectively) were compared to reference area for the purpose of clarifying the differences.

___

  • Kassir, L.N., Lartiges, B., Ouaini, N.(2012). Effects of Fertilizer Industry Emmissions on Local Soil Contamination: A case Study of a Phosphate Plant on the East Mediterranean
  • Coast. Environmental Technology, Vol.33, No.8, 873-885. FIPR (Florida Instute of Phospate Research Projects). (1996). Predicting the long–term impact of high rates of phosphogypsum applications on radioactivity in soil, groundwater and bahiagrass forage and on radon emissions.
  • U.S.Environmental Protection Agency. (2005). Applying for other uses of phosphogypsum: Submitting a Complete Petition 40 CFR 61. 206.
  • Reijnders, L. (2007). Cleaner phosphogypsum, coal combustion ashes and waste
  • ıncineration ashes for application in building materials: A review. Elsevier. Building and Environment. 42, 1036-1042.
  • Tayibi H, Choura M, Lopez F, Alguacil A, Lopez-Delgado A. (2009). Environmental impact and management of phosphogypsum, Journal of Environmental Management . 90, 2377-2386.
  • Rutherford, P.M, Dudas, M.J., Arocena, J.M. (1995). Radioactivity and elemental composition of phosphogypsum produced from three phoshate rock sources. Waste
  • Management & Research. 13, 407-423. Perez-Lopez R, Alvarez-Valero A, Nieto J.M. (2007). Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva(SW Spain) and environmental impact of phosphogypsum wastes, Journal of Hazardous Materials 1 745-750.
  • Çoruh, S., Ergun, O.N. (2010). Use of fly ash, phosphoypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste. Journal of Hazardous Materials. 173, 468-473.
  • Değirmenci, N. (2005). The use of ındustrial wastes in adobe stabilization. G.Ü Fen
  • Bilimleri Dergisi. 18(3): 505-515. Aoun, M., El Samrani, A.G., Lartiges, B.S., Kazpard, V., Saad, Z. (2010). Releases of phosphate fertilizer industry in the surrounding environment: Investigation on heavy metals and polonium-210 in soil. Journal of Environmental Sciences. 22(9) 1387-1397.
  • Rutherford, P.M., Dudas, M.J., Samek, R.A. (1994). Environmental impact of phosphogypsum. Elsevier, The Science of the Total Environment. 149. 1-38.
  • Berish, C.W. (1990). Potential environmental hazards of phosphogypsum storage in
  • Central Florida. U.S. Environmental Protection Agency,.Region IV, 404-347-7109.
  • Becker, P. (1989). Phosphates and phosphoric acid: Raw materials, technology and economics of the wet process. Fert. Sci. Techol. Ser. Second Edition, Vol. 6, p.752.
  • Burnett, W.C., Elzerman, A.W. (2001). Nuclide migration and the environmental radiochemistry of Florida phosphogypsum. Journal of Environmental Radioactivity. 54, 27Rutherford, P.M, Dudas, M.J., Arocena, J.M. (1996). Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Elsevier, The Science of the Total Environme.t 180. 201-209.
  • Al-Masri, M.S. Amin, Y., İbrahim, S., Al-Bich, F. (2004). Distrubition of some trace metals in Syrian phosphogypsum. Elsevier, Applied Geochemistry. 19. 747-753.
  • ] Arocena, J.M., Rutherford, P.M and Dudas, M.J. (1995). Heterogeneous distribution of trace elements and flourine in PG by product. The Science of the Total Environment. 162: 149-1
  • Jackson, M, E. (2009). Assesment of soil capping for phosphogypsum stack reclamation at fort Saskatchewan, Alberta”, Master Thesis. Canada.
  • ECDGE, European Commission Director General Environment. (2010). Heavy metals and organic compounds from wastes used as organic fertilizers. Final Report. July WPA
  • Consulting Engineers İnc. Coşkun, M., Steinnes, E., Frontasyeva, M.V., Sjobakk, T.E and Demkına, S. (2006).
  • Heavy metal pollution of surface soil in the Thrace Region, Turkey. Environmental Monitoring and Assesment 119: 545-556. Aktaş, Y.K., Kocabaş, A (2010). Heavy metal content of roadside soil in Edirne, Turkey. Analytical Letters, 43: 1869-1878.
  • Yılmaz, F., Yılmaz, Y.Z., Ergin, M., Erkol, Y., Müftüoğlu, A.E ve Karakelle, B. (2003). Heavy metal concentrations in surface soils of İzmit Gulf Region, Turkey. Journal of Trace and Microprobe Techniques. Vol. 21, No:3, pp. 523-531.
  • Canbay, M. (2010). Investigation of the relation between heavy metal contamination of soil and its magnetic susceptibility. International Journal of Physical Sciences Vol.5(5), 393400.
  • Bowen, H.J.M. (1979). Elements in lithosphere and biosphere. Environmental
  • Chemistry of the Element, Academic Press, Beijing, pp. 174-208. Akdağ, S.A., Dinler, A., Menteş, Ş.S. (2007). Rüzgar karakteristiğinin analizi.
  • YEKSEM 07 1 Kasım 2007, Gaziantep.
  • Susurluk Havzası Toprakları, Topraksu Genel Müdürlüğü Yayınları:258, Köy işleri Bakanlığı Yayınları:174, havza no:3, raporlar serisi:46 Marmara Havzası Toprakları, Topraksu Genel Müdürlüğü Yayınları:309, Köy işleri Bakanlığı Yayınları:229, havza no:4, raporlar serisi:91 Kabata-Pendias A, Pendias H (1992). Trace elements in soils and plants. 2nd edition.
  • CRC press, Inc, Boca Raton, Florida Kabata-Pendias, A., Pendias, H. (1993). Biochemistry of Trace Elements, Warszava, PWN.
  • Canadian Soil Quality Guideline agricultural land. C.E.Q. Guidelines (ed.), Canada, 19 http://ceqg-rcqe. ccme.ca/.