Dağıtık Sualtı Sensör Ağlarının Karma Tamsayılı Doğrusal Olmayan Programlama ile Optimizasyonu

Bu çalışmada geniş deniz sahalarının aranması maksadıyla birden çok kaynak ve alıcının bir araya getirilmesiyle oluşturulan dağıtık sualtı sensör ağlarının en yüksek kaplamayı sağlayacak şekilde konfigürasyonu problemi incelenmiştir. Birbirlerinden bağımsız ve farklı mevkilerde bulunan sensörlerin oluşturduğu bu tipi sistemlerde her kaynak-alıcı çifti için tespit bölgesi Cassini ovalleri ile modellenmektedir. Karma Tamsayılı Doğrusal Olmayan Programlama (KTDOP) yöntemi kullanılarak modellenen optimizasyon probleminde söz konusu ovallerin geometrik özelliklerinden istifade edilmiş, çeşitli sayılarda kaynak ve alıcılardan oluşan sensör ağları için optimum konfigürasyonlar oluşturulmuştur. Elde edilen teorik sonuçlar Monte Carlo simülasyonları ile doğrulanmıştır.

Optimization of Distributed Underwater Sensor Networks with Mixed Integer Non-Linear Programming

In this study is analyzed the problem of configuring distributed underwater sensor networks composed of multiple sources and receivers to achieve maximum area coverage for searching large ocean areas. In such surveillance systems where independent receivers are deployed in different locations, the detection zone for each source-receiver pair is modeled by a Cassini oval. Modeling the optimization problem with Mixed Integer Non-Linear Programming method, geometrical properties of such ovals are used to create optimal sensor configurations for different number of sensor. The theoretical results are verified with Monte Carlo simulations.

___

  • Akyıldız, I.F., Pompili, D. ve Melodia T. (2005) “Underwater acoustic sensor networks: research challenges”, Ad Hoc Networks, Volume 3, Issue 3, Pages 257-279.
  • Kim S., Ku B., Hong W. ve Ko H. (2008). "Performance comparison of target localization for active sonar systems", IEEE Transactions on Aerospace and Electronic Systems, vol.44, no.4, pp.1371-1380.
  • Cox, H. (1989). “Fundamentals of Bistatic Active Sonar”, Underwater Acoustic Data
  • Processing (Y. Chan, ed.), Kluwer, pp. 3-24. DelBalzo D.R., Kierstead D.P. ve Stangl K.C. (2005) “Oceanographic effects on optimized multistatic sonobuoy fields” OCEANS, Proceedings of MTS/IEEE, Vol 2, pp. 1324.
  • Walsh M.J. ve Wettergren T.A. (2008). “Search performance prediction for multistatic sensor fields”, Technical Report, Naval Undersea Warfare Center, Newport, RI.
  • Tharmarasa R., Kirubarajan T. ve Lang T. (2009). “Joint path planning and sensor subset selection for multistatic sensor networks”, Proc. of Symposium on Computational Intelligence in Security and Defence Applications.
  • Wang I.J., Lim J.H. ve Terzis A. (2008). “Energy-efficient sensor management in multi- static active sonar networks”, IEEE Signals, Systems and Computers, 42nd Asilomar Conference, 1611-1616.
  • Saksena A. ve Wang I.J. (2008). “Dynamic ping optimization for surveillance in multistatic sonar buoy networks with energy constraints” Decision and Control, CDC, 47th IEEE Conference, 1109–1114.
  • Coraluppi S. (2006) “Multistatic sonar localization”, Oceanic Engineering, IEEE Journal, Vol 31, Issue: 4, 964-974.
  • Simakov S. (2008). “Localization in airborne multistatic sonars”, Oceanic Engineering,
  • IEEE Journal , Vol 33, Issue:3, 278 – 288. Erdinç O. ve Willet P. (2006). “Multistatic sensor placement: a tracking approach”,
  • Information Fusion, 9th International Conference, pp.1-8. Poikonen A., Mertsalmi P. ve Mattila P. (2009). “Multistatic sonar studies in shallow water environment in the gulf of Finland”, UAM-Underwater Acoustics Measurements Seminar.
  • Casbeer D.W., Swindlehurst A.L. ve Beard R. (2006). “Connectivity in UAV multi-static radar network”, American Institute of Aeronautics and Austronautics AIAA, 6209.
  • Schmidt H., Edwards J.R. ve Liu T.C. (2002). “GOATS: AUV-based Multi-static Sonar
  • Concept for Littoral MCM”, 5th International Symposium Technology and the Mine Problem, U.S. Naval Postgraduate School, Monterey, CA. Urick R.J. (1983). “Principles of Underwater Sound”, 3rd Edition, Peninsula Publishing, Los Altos, CA.
  • Willis N.J. (2008). “Bistatic Radar”, Radar Handbook, Skolnik M.I. (Editor in Chief),
  • McGraw-Hill Professional, pp.23.4. Hirst A.E., Lloyd E.K., “Cassini, his ovals and a space probe to Saturn”, The Mathematical Gazette, Vol. 81, No. 492, (1997).
  • Hellmers, J., Eremina, E. ve Wriedt T. (2006). “Simulation of light scattering by biconcave Cassini ovals using the nullfield”, Journal Of Optics A: Pure And Applied Optics,
  • J. Opt. A: Pure Appl. Opt. 8, 1–9 method with discrete sources. Angelov, B. ve Mladenov., I.M. (1999). “Geometry, Integrability and Quantization” 1st edition, Mladenov ve Naber G., (Sofia: Coral Press) pp. 27–47.
  • Mazeron P. ve Muller S. (1998). “Dielectric or absorbing particles: EM surface fields and scattering”, Journal Of Optics, Vol 29, 68–77.
  • Di Biasio, A. ve Cametti, C. (2005). “Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane”, Bioelectrochem, Vol 65 pp. 163-169.
  • James G. ve James R. C. (1992). “Mathematics Dictionary”, 5th edition, D. Van Nostrand Co. Inc., New York, 47.
  • Willis, N. J. (2005). “Bistatic Radar”, 2nd edition, SciTech Publishing Inc., Raleigh, NC.
  • MacTutor (2012), “History of Mathematics Archive, Cassinian Ovals”, http://www- groups.dcs.st-and.ac.uk/~history/Curves/Cassinian.html.
  • Gray A. (1997) “Cassinian Ovals, Modern Differential Geometry of Curves and Surfaces with Mathematica”, 2nd edition, Boca Raton, FL: CRC Press, pp.82-86.
  • Washburn, A.R. (2010). “A Multistatic Sonobuoy Theory”, Technical Report, Naval
  • Postgraduate School, Monterey, CA. GAMS Development Corporation, General Algebraic Modeling System (GAMS). (2005). Retrieved December 15, 2007, http://www.gams.com.