Baş Boyun Radyoterapisinde Farklı Tedavi Teknikleri İle Simultane Integre Boost Yönteminin Karşılaştırılması

Bu çalışmada, baş boyun kanserlerinin tedavisinde kullanılan yoğunluk ayarlı radyoterapi ve yoğunluk ayarlı ark terapi tekniklerinin dozimetrik olarak karşılaştırılması amaçlanmıştır. Planlarda benzer planlama hedefleri ile 33 günlük fraksiyonlarla eş zamanlı olarak hedef hacimlerde farklı doz seviyelerinin sağlandığı Simultane Integre Boost tekniği kullanılmıştır. Planlar, 6 MV foton enerjisi kullanılarak, anisotropic analitic algoritması ile Eclipse tedavi planlama bilgisayarında hesaplatılmıştır. 9 Alan YART ve 2 Ark YAAT planlarının doz homojenitesi ve doz konformalitesi açısından daha üstün oldukları görülmektedir. Kritik organların doz değerleri incelendiğinde optik sinirler, kiazma, gözler, lensler ve parotisler için en düşük dozlar 7 ve 9 Alan YART planları ile elde edilirken beyin sapı, spinal kord, mandibula ve larenks için en iyi dozlar 2 Ark YAAT planları ile elde edilmiştir. Oral kavite dozu 1 Ark YAAT planları ile önemli ölçüde azaltılabilmektedir. Normal dokuda yüksek doz alan hacim değerleri ve ortalama normal doku doz değerleri 1 ve 2 Ark YAAT planları ile azalırken, normal dokuda düşük doz alan hacim değerleri azda olsa 1 ve 2 Ark planları ile artış göstermektedir. 1, 2 Ark YAAT ve 7, 9 Alan YART planları baş boyun kanserlerinde klinik olarak kabul edilebilir tedavi yöntemleridir. Tedavi süresinin kısalığı ve monitor unit değerlerinin düşük olması açısından YAAT planları daha avantajlıdır.

Comparıson of Simultaneous Integrated Boost Method for Different Treatments in Head and Neck Cancer Radiotherapy

A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy versus intensity modulated radiation therapy in the treatment of head and neck. Patients were investigated, with a standard prescription of three dose levels to the target volumes in 33 fractions. Simultaneous Integrated Boost technique was generated for all techniques, with similar planning objectives. Plans were calculated for 6MV photon using anisotropic analytical algorithm implemented in Eclipse treatment planning system. 9 field IMRT and 2 arc VMAT plans show superior dose homogeneity and dose conformity in PTVs. Doses to optic nerves, chiasm, eyes, lenses and protists were slightly lower in 7, 9 field IMRT plans. Doses to the brain stem, spinal cord, mandibula and larynx were better in the 2 arc VMAT techniques. Oral cavity dose reduced significantly with 1 arc VMAT. The high dose radiation volume to the normal tissue and the mean normal tissue dose decreased, but the low dose radiation volume increased slightly in the 1 and 2 arc VMAT plans. 1, 2 arc VMAT and 7, 9 field IMRT plans produced clinically acceptable treatment plan for the head and neck cancer. VMAT represents an attractive solution because of the shorter delivery time and the lower of monitor unit compared with IMRT.

___

  • 1 Nath, R., Biggs, P.J., Bova, F.J., Ling, C.C., Purdy, J.A., van de Geijn, J., Weinhous, M.S. (1994). SYN45 : AAPM Code of Practice for Radiotherapy Accelerators, Report of AAPM Radiation Therapy Task Group, USA.
  • 2 Edward, C.H., Carlos, A.P., Luther, W.B. (2007). Perez and Brady’s Principles and Practice of Radiation Oncology. Lippincott Williams&Wilkins (ed.), 5. baskı, New York, USA.
  • 3 Hall, E.J., Giaccia, A.J. (2006). Radiobiology for the radiologist. Lippincott Williams&Wilkins (ed.), 6. baskı, Philadelphia, USA.
  • 4 Carol, M.P. (1995). A system for planning and rotational delivery of intensity-modulated fields. International journal imaging systems technology, 6, 56-61.
  • 5 Ling, C.C., Burman, C., Chui, C.S. (1996). Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. International Journal of Radiation Oncology Biology Physics, 35(4), 721-730.
  • 6 International Commission on Radiation Units and Measurements. (2010). Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT), Oxford University, ICRU Report 83, UK.
  • 7 Carol, M.P., Targovnik, H., Smith, D. (1992). 3-D planning and delivery system for optimized conformal therapy. International Journal of Radiation Oncology Biology Physics, 24, 158.
  • 8 Mundt, A.J., Roeske, J.C. (2005). Intensity Modulated Radiation Therapy A Clinical Perspective. BC Decker (ed.), 5. baskı, Hamilton, USA.
  • 9 James, D.C., Kian, A. (2010). Radiation Oncology: Rationale, Technique, Results. Mosby Elsevier (ed.), 9. baskı, Philadelphia, USA.
  • 10 Paul, Q.M., Peter, H.R.E., Patrick, J.G. (2009). Principles and Practice of Head and Neck Surgery and Oncology. Informa healthcare (ed.), 2. baskı, New York, USA.
  • 11 Otto, K. (2007). Volumetric modulated arc therapy: IMRT in a single gantry arc. Medical Physics, 35(1), 310. 12 Khan, F.M. (2003). The Physics of Radiation Therapy. Lippincott Williams&Wilkins (ed.), 4. baskı, Philadelphia, USA.
  • 13 Khan, F.M., Gibbons, J.P. (2014). Treatment Planning in Radiation Oncology. Lippincott Williams&Wilkins (ed.), 5. baskı, Philadelphia, USA.
  • 14 Lauve, A., Morris, M., Schmidt-Ullrich, R. (2004). Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head and neck squamous cell carcinomas: II clinical results. International Journal of Radiation Oncology Biology Physics, 60(2), 374-387.
  • 15 Mohan, R., Wu, Q., Manning, M., Schmidt-Ulrich, R. (2000). Radiobiological considerations in teh design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers. International Journal of Radiation Oncology Biology Physics, 46(3), 619-630.
  • 16 Bai, Y.R., Wu, G.H., Guo, W.J. (2003). Intensity modulated radiation therapy and chemotherapy for locally advanced pancreatic cancer: results of feasibility study. World Journal of Gastroenterol, 9(11), 2561-2564.
  • 17 Orlandi, E., Palazzi, M., Pignoli, E., Fallai, C., Giostra, A., Olmi, P. (2010). Radiobiological basis and clinical results of the simultaneous integrated boost (SIB) in intensity modulated radiotherapy (IMRT) for head and neck cancer. Critical Reviews in Oncology Hematol, 73(2), 111-125.
  • 18 Li, J.G., Xing, L., Boyer, A.L., Hamilton, R.J., Spelbring, D.R., Turian, J.V. (1999). Matching photon and electron fields with dynamic intensity modulation. Medical Physics, 26(11), 2379-2384.
  • 19 Radiation Therapy Oncology Group (RTOG), http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx, (16.05.2012).
  • 20 Schelegel, W., Bortfeld, T., Grosu, A.L. (2006). New Technoligies in Radiation Oncology. Springer (ed.), 1. baskı, Verlag, Berlin.
  • 21 Van’t Riet, A., Mak, A.C., Moerland, M.A. (1997). A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. International Journal of Radiation Oncology Biology Physics, 37, 731–736.
  • 22 Krishnan, J., Rao, S., Hedge, S., Shetty, J., Shambhavi. (2015). A Dosimetric Comparison of Double Arc Volumetric Modulated Arc Therapy with Large Field Intensity Modulated Radiation Therapy for Head and Neck Cancer. International Journal of Medical Physics, 4, 353-363.
  • 23 Boylan, C., Rowbottom, C. (2014). A bias-free, automated planning tool for technique comparison in radiotherapy–application to nasopharyngeal carcinoma treatments. Journal of Applied Clinical Medical Physics, 15(1), 213-225.
  • 24 Syam Kumar, S.A., Vivekanandan, N., Sriram, P. (2012). A study on conventional IMRT and RapidArc treatment planning techniques for head and neck cancers. ScienceDirect, 17, 168-175.
  • 25 White, P., Chan, K.C., Cheng, K.W., Chan, K.Y., Chau, M.C. (2013). Volumetric intensity-modulated arc therapy vs conventional intensity-modulated radiation therapy in nasopharyngeal carcinoma: a dosimetric study. Journal of Radiation Research, 54, 532-545.