Ağsız Yöntem Uygulamaları için Trigonometri Tabanlı Radyal Özelliğe Sahip Yeni Bir Temel Fonksiyon

Bu çalışmada, ağsız yöntemler için radyal özelliğe sahip yeni bir temel fonksiyon önerilmiştir. Önerilen fonksiyon, iki boyutta, dört farklı problemde, ağsız yöntemlerde sıklıkla kullanılan Ters Multikuadrik ve Gauss fonksiyonlarıyla birlikte test edilmiştir. Test problemlerinin üç tanesi 2. mertebeden mühendislik problemlerini içerirken son test problemi 4. mertebeden bir mühendislik problemi uygulaması olmuştur. 2. mertebeden test problemlerinde farklı sınır koşulları ve problem türleri incelenmiştir. Yapılan sayısal deneyler, önerilen fonksiyonun Ters Multikuadrik ve Gauss fonksiyonlarına kıyasla daha az nokta sayılarında benzer mertebedeki hatalara ulaşabildiğini göstermiştir. Ayrıca nokta sayısının artmasıyla aynı mertebedeki hatalar için kullanılabilecek şekil/ölçek parametresinin (epsilon) diğer iki fonksiyona kıyasla daha geniş bir aralıkta seçilebildiği gösterilmiştir. Dolayısıyla, önerilen fonksiyon, ağsız yöntem uygulamalarında bir alternatif olarak kullanılabilecektir.

A New Trigonometric Based Radial Basis Function for Meshless Method Applications

In this study, a new radial basis function for meshless method is proposed. The proposed function was tested on four different 2D problems along with the two well-known IMQ and Gauss functions. Three of the test problems include 2nd order engineering problems whereas the last test problem was a 4th order engineering problem. 2nd order engineering problems were used to investigate the type of boundary conditions and problems. Numerical experiments suggested that similar order of error can be obtained using the proposed function with less number of nodes compared to IMQ and Gauss functions. Besides that, with an increase on the number of nodes, the range of shape/scale parameter (epsilon) for the proposed function is broader that that for the other two functions. Thus, the proposed function is a good candidate for meshless method applications. 

___

  • Altınkaynak, A., Gupta, M., Spalding, M. A., & Crabtree, S. L. (2011). Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. International Polymer Processing, 26(2), 182-196.
  • Uygun, M., & Kırkköprü, K. (2011). Katı yakıtlı roket motorlarında daimi olmayan akışların ikili zaman adımlaması yöntemi ile sayısal benzetimi. İTÜDERGİSİ/d, 8(2).
  • Kığılı, H. N. (2006). Tünel Üst Yapı Etkileşim Problemlerinin Sınır Elemanlar Yöntemiyle İncelenmesi. İTÜ Fen Bilimleri Enstitüsü.
  • Rodrigues, D., Belinha, J., Pires, F., Dinis, L., & Jorge, R. N. (2018). Homogenization technique for heterogeneous composite materials using meshless methods. Engineering Analysis with Boundary Elements, 92, 73-89.
  • Fasshauer, G., & McCourt, M. (2015). Kernel-based approximation methods using Matlab (Vol. 19): World Scientific Publishing Company.
  • Kansa, E. J. (1990b). Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications, 19(8), 147-161.
  • Kansa, E. J. (1990a). Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Computers & Mathematics with Applications, 19(8), 127-145.
  • Fornberg, B., & Flyer, N. (2015b). Solving PDEs with radial basis functions. Acta Numerica, 24, 215-258.
  • Fornberg, B., & Flyer, N. (2005). Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids. Advances in Computational Mathematics, 23(1-2), 5-20.
  • Fasshauer, G. E. (2007). Meshfree approximation methods with MATLAB (Vol. 6): World Scientific.
  • Fornberg, B., & Wright, G. (2004). Stable computation of multiquadric interpolants for all values of the shape parameter. Computers & Mathematics with Applications, 48(5-6), 853-867.
  • Larsson, E., Lehto, E., Heryudono, A., & Fornberg, B. (2013). Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM Journal on Scientific Computing, 35(4), A2096-A2119.
  • Fasshauer, G. E. (1999). Solving differential equations with radial basis functions: multilevel methods and smoothing. Advances in Computational Mathematics, 11(2-3), 139-159.
  • Chou, C., Sun, C., Young, D., Sladek, J., & Sladek, V. (2015). Extrapolated local radial basis function collocation method for shallow water problems. Engineering Analysis with Boundary Elements, 50, 275-290.
  • Farahani, B. V., Berardo, J., Belinha, J., Ferreira, A., Tavares, P. J., & Moreira, P. (2017). On the optimal shape parameters of distinct versions of RBF meshless methods for the bending analysis of plates. Engineering Analysis with Boundary Elements, 84, 77-86.
  • Xia, C.-c., Jiang, T.-t., & Chen, W.-f. (2016). Particle Swarm Optimization of Aerodynamic Shapes With Nonuniform Shape Parameter–Based Radial Basis Function. Journal of Aerospace Engineering, 30(3), 04016089.
  • Biazar, J., & Hosami, M. (2017). An interval for the shape parameter in radial basis function approximation. Applied Mathematics and Computation, 315, 131-149.
  • Larsson, E., & Fornberg, B. (2003). A numerical study of some radial basis function based solution methods for elliptic PDEs. Computers & Mathematics with Applications, 46(5), 891-902.
  • Fornberg, B., & Flyer, N. (2015a). A primer on radial basis functions with applications to the geosciences: SIAM.
  • Li, J., Cheng, A. H.-D., & Chen, C.-S. (2003). A comparison of efficiency and error convergence of multiquadric collocation method and finite element method. Engineering Analysis with Boundary Elements, 27(3), 251-257.
  • Golbabai, A., Mohebianfar, E., & Rabiei, H. (2015). On the new variable shape parameter strategies for radial basis functions. Computational and Applied Mathematics, 34(2), 691-704.
  • Schaback, R. (2009). Solving the Laplace equation by meshless collocation using harmonic kernels. Advances in Computational Mathematics, 31(4), 457.
  • Leitao, V. M. (2001). A meshless method for Kirchhoff plate bending problems. International Journal for Numerical Methods in Engineering, 52(10), 1107-1130.
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi