Nano Bor İçerikli Yeni Nesil PEMFC Nanokompozit Membranların Üretimi ve Karakterizasyonu

Bu çalışmada, çeşitli stokiyometrik oranlarda hazırlanan nano hekzagonal bor nitrür (NhBN), fosforik asit (FA) ve Nafyon (NAF) içeren yeni nesil proton iletken nano kompozit membran (NKM) üretildi ve su tutma, metanol geçirgenlik ve iyonik iletkenlik değerleri incelendi. NAF ağırlıkça %3-10 oranlarında NhBN ve molce %10-20 oranlarında FA ile karıştırılarak NKM’lar hazırlandı. Metanol geçirgenliği ve su tutma testleri sonuçlarına göre, hidrofobik NhBN parçacıklarının membranların su tutma ve metanol geçirgenliğini azaltırken FA’in su tutma özelliği ve metanol geçirgenliğini arttırdığı gözlemlendi. Maksimum proton iletkenliği, nem içermeyen ortamda 150°C'de, molce %20 FA ve ağırlıkça %3 NhBN içeren NKM için 0.056 S/cm olarak ölçüldü.

Production and Characterization of Novel PEMFC Nanocomposite Membranes Including Boron Nanoparticles

In this study, water absorption, methanol permeation and proton conductivity values of nano composite proton conducting membrane based on nafion, phosphoric acid and hexagonal boron nitride with various stochiometric ratios are investigated and membrane characterizations are made throughout this study. Ternary composite membranes are prepared by mixing Nafion with nano hexagonal boron nitride (NhBN) particles varied 3, 5 and 10% weight ratios and phosphoric acid varied 10 and 20% molar ratios respectively. According to the results of methanol permeability and water absorption investigations, it has been observed that hydrophobic NhBN particles increase the water absorption and methanol permeability of the membranes while phosphoric acid enhances these properties. Under anhydrous conditions at 150°C, higher ionic conductivity values are obtained than pure Nafion such as 0.056 S/cm for membranes that contain %20 phosphoric acid molarly and %3 BN weight ratios.

___

  • Aili D, Hansen MK, Pan C, Li Q, Christensen E, Jensen JO, Bjerrum NJ, 2011. Phosphoric acid doped membranes based on Nafyon®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing. International Journal of Hydrogen Energy, 36(12): p. 6985-6993.
  • Akel M, Çelik SÜ, Bozkurt A, Ata A, 2016. Nano Hexagonal Boron Nitride–Nafyon Composite Membranes for Proton Exchange Membrane Fuel Cells. Polymer Composites, 37(2): p. 422-428.
  • Baradie B, Dodelet JP, Guay D, 2000. Hybrid Nafyon®-inorganic membrane with potential applications for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 489(1-2): p. 101–105.
  • Corti HR, Nores-Pondal F, Buera MP, 2006. Low temperature thermal properties of Nafyon 117 membranes in water and methanol-water mixtures. Journal of Power Sources, 161(2): p. 799-805.
  • Cui Y, Baker AP, Xu X, Xiang Y, Wang L, Lavorgna M, Wu J, 2015. Enhancement of Nafyon based membranes for direct methanol fuel cell applications through the inclusion of ammonium-X zeolite fillers. Journal of Power Sources, 294: p. 369-376.
  • Gasa JV, Boob S, Weiss RA, Shaw MT, 2006. Proton-exchange membranes composed of slightly sulfonated poly(ether ketone ketone) and highly sulfonated crosslinked polystyrene particles. Journal of Membrane Science, 269(1-2): p. 177-186.
  • Granovskii, M, Dincer I, Rosen MA, 2006. Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles. Journal of Power Sources, 157(1): p. 411-421.
  • Hsu, WY, Gierke TD, 1983. Ion transport and clustering in Nafyon perfluorinated membranes. Journal of Membrane Science, 13(3): p. 307-326.
  • Matović B, Luković J, Nikolić M, Babić B, Stanković N, Jokić B, Jelenković B, 2016. Synthesis and characterization of nanocrystaline hexagonal boron nitride powders: XRD and luminescence properties. Ceramics International, 42(15): p. 16655-16658.
  • Neves LA, Benavente J, Coelhoso IM, Crespo JG, 2010. Design and characterisation of Nafyon membranes with incorporated ionic liquids cations. Journal of Membrane Science, 347(1-2): p. 42-52.
  • Park YS, Yamazaki Y, 2006. Low water/methanol permeable Nafyon/CHP organic–inorganic composite membrane with high crystallinity. European Polymer Journal, 42(2): p. 375-387.
  • Saccà A, Carbone A, Pedicini R, Portale G, D’Ilario L, Longo A, Martorana A, Passalacqua E, 2006. Structural and electrochemical investigation on re-cast Nafyon membranes for polymer electrolyte fuel cells (PEFCs) application. Journal of Membrane Science, 278(1-2): p. 105-113.
  • Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C, 1994. A Polymer Electrolyte for Operation at Temperatures up to 200°C. Journal of The Electrochemical Society, 141(4): p. L46-L48.
  • Schwenzer B, Kim S, Vijayakumar M, Yang Z, Liu J, 2011. Correlation of structural differences between Nafyon/polyaniline and Nafyon/polypyrrole composite membranes and observed transport properties. Journal of Membrane Science, 372(1-2): p. 11-19.
  • Schwitzgebel G, Endres F, 1995. The determination of the apparent diffusion coefficient of HC1 in Nafyon®-ll7 and polypyrrole + Nafyon*)-ll7 by simple potential measurements. Journal of Electroanalytical Chemistry, 336(1-2): p. 11-16.
  • Yin Y, Li Z, Yang X, Cao L, Wang C, Zhang B, Wu h, Jiang Z, 2016. Enhanced proton conductivity of Nafyon composite membrane by incorporating phosphoric acid-loaded covalent organic framework. Journal of Power Sources, 332: p. 265-273.
  • Zheng J, He Q, Liu C, Yuan T, Zhang S, Yang H, 2015. Nafyon-microporous organic polymer networks composite membranes. Journal of Membrane Science, 476: p. 571-579.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -