Kopolimerlerin Tuz Stresi Altındaki Mısır Bitkilerine Etkisinin Biyokimyasal Olarak İncelenmesi

Bu araştırmada, biyobozunur özellik gösteren ve 4 farklı oranda sentezlenen poli(etilen oksit)-ko-(ε-kaprolakton) [poli(EO-ko-ε-CL)] kopolimerinin tarımda tuz stresine karşı cevabını incelemek için mısır (Zea mays L. cv. “72 May 99”) bitkilerine uygulama yapılmıştır. Mısıra, kopolimerler, 200 mM tuz (NaCl) çözeltisi ve hem kopolimerler hem de tuz çözeltisi birlikte uygulanarak kontrol gruplarıyla karşılaştırılmıştır. Kopolimerlerin ve tuzluluğun bitki gelişimine etkisini değerlendirmek için lipid peroksidasyonu, pigment ve toplam karbonhidrat içeriği gibi bazı biyokimyasal analizler yapılmıştır. Kopolimerlerin, klorofil içeriğinin yanı sıra lipid peroksidasyon içeriğinin bir ürünü olan malondialdehit (MDA) ve toplam karbonhidrat içeriği üzerinde de olumlu bir etkisi olduğu saptanmıştır. Ayrıca mısır bitkisinde bu kopolimerlerden poli (EO-ko-ε-CL1:4)’ün, tuzluluğun zararlı etkilerinin önlenmesinde diğer kopolimerlerden daha etkili olduğu gözlenmiştir. Sonuç olarak, incelenen tüm parametrelerin tuz stresinden olumsuz etkilendiği görülürken, kopolimer uygulamasının tuz stresine cevapta olumlu etki oluşturduğu saptanmıştır.

Biochemical Investigation of Effects of Copolymers on Corn Plants Under Salt Stress

In this study, in order to investigate possible applications in agriculture of biodegradable poly (ethylene oxide) -co- (ε-caprolactone) [poly (EO-co-ε-CL)] copolymer synthesized in 4 different ratios, growth analysis was performed in corn plants. Copolymers, 200 mM salt (NaCl) solution and both copolymers and salt solution were applied to the corn together and compared with the control groups. To evaluate the effect of copolymers and salinity on plant growth, some biochemical analyzes such as lipid peroxidation, pigment and total carbohydrate content were performed. It was determined that copolymers had a positive effect on malondialdehyde (MDA) a product of lipid peroxidation and total carbohydrate content as well as chlorophyll content. Furthermore, poly (EO-co-ε-CL1:4) of these copolymers was more effective than other copolymers in preventing the harmful effects of salinity on the growth of corn plants. As a result, it was observed that all parameters examined were negatively affected by salt stress, while copolymer application had a positive effect.

___

  • Beker Akbulut G, Torğut G, 2020. Biochemical responses of some sunflower (Helianthus annuus L.) cultivars to the interaction effects of biodegradable polymer and salt stress. Fresenius Environmental Bulletin, 29:1, 222–230.
  • De-Kok L, Graham M, 1980. Levels of pigments, soluble proteins, amino acids and sulfhydryl compounds in foliar tissue of Arabidopsis thaliana during dark induced and natural senesence. Plant Physiology and Biochemistry, 27: 133–142.
  • Duncan DB, 1955. Multiple range and multiple F tests. Biometrics, 11: 1–42.
  • Heath RL, Packer L, 1968. Photoperoxidation in isolated chloroplast, I. kinetics stoichiometry of fatty acid peroxidation. Archives Biochemistry Biophysics, 125: 180.
  • Kerepesi I, Galiba G, 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40: 482-487.
  • Koca H, Bor M, Özdemir F, Türkan I, 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, 60: 344-351.
  • Lichtenthaler K, Welburn AR, 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591–592.
  • Lungu M, Pascu MC, Bumbu GG, Darie H, Vasile C, Moldovan L, 2004. Bioartificial polymeric materials based on plasticized PVC/natural polymer blends. I. Binary plasticized PVC/hydrolyzed collagen blends. International Journal of Polymeric Materials, 53: 525–540.
  • Moharramnejad S, Taherkhani T, 2015. Response of antioxidant enzyme activity and pigment content in common bean (Phaseolus vulgaris L.) seedlings under salt stress. Cumhuriyet University Faculty of Science, Science Journal (CSJ), 36: 2828-2833
  • Muchate SN, Rajurkar NS, Suprasanna P, Nikam TD, 2019. NaCl induced salt adaptive changes and enhanced accumulation of 20-hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea (L.), 9: 12522-12531
  • Mugnozza GS, Schettini E, Vox G, 2004. Effects of solar radiation on the radiometric properties of biodegradable films for agricultural applications. Biosystems Engineering, 87: 479–487.
  • Okada M, 2002. Chemical synthesis of biodegradable polymers. Progress in Polymer Science, 27:87–133.
  • Puccini M, Stefanelli E, Seggiani M, Balestri E, Vitolo S, 2017. Biodegradability of polyethylene/hydrolyzed collagen blends in terrestrial and marine environmental conditions. Journal of Renewable Materials, 5: 117–123.
  • Rosenberg S, 1980. Physiological studies of lignocellulose degratation by thermotolerant mold Chrysosprorium prunosum. Symposium on the biological transformation of lignocellulose 12: 133–142.
  • Seggiania M, Altieri R, Puccini M, Stefanelli E, Esposito A, Castellani F, Stanzione V, Vitolo S, 2018. Polycaprolactone-collagen hydrolysate thermoplastic blends: Processability and biodegradability/compostability. Polymer Degradation and Stability, 150: 13–24.
  • Serna M, Coll Y, Zapata PJ, Botella MA, Pretel MT, Amorós A, 2015. A brassinosteroid analogue prevented the effect of salt stress onethylene synthesis and polyamines in lettuce plants. Horticultural Science, 185: 105–112.
  • Sudhir P, Murthy SDS, 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42, 481-486.
  • Torğut G, Demirelli K, 2016. Block copolymerization of methylmethacrylate via ATRP method using a macroinitiator produced by ring opening polymerization: Characterization, dielectric properties, and a kinetic investigation. Journal of Macromolecular Science, Part A Pure and Applied Chemistry, 53: 669-676.
  • Torğut G, Beker Akbulut G, 2018. Effect of the novel biodegradable copolymer and soil salinity on the growth of corn plant. Advances in Polymer Technology, 37: 3588-3595.