İnsanların Siyanotoksinler ile Teması ve Sağlığa Etkileri

Siyanobakteriler; gram negatif, 16S rRNA ve klorofil-a içeren, karbondioksit ve atmosferik azotu fiske edebilen, fotosentetik, organik karbon ve oksijen üretebilen tek prokaryotik organizmadır. Son yıllarda değişen iklim koşulları ve artan insan faaliyetleri, tüm dünyada zararlı siyanobakteriyel bloom oluşum sıklığını artırmaktadır. Siyanobakteriyel bloomlar, zararlı toksinler ve kötü kokulu bileşikler üreterek içme suyu ve eğlence suları için bir tehdit oluşturmaktadır. Ayrıca bloom oluşumu, hipoksiye ve ekosistemdeki besin ağının bozulmasına neden olur. Çeşitli çevresel faktörlerin siyanotoksin sentezinin düzenlenmesindeki rollerinin bilinmesi, toksik siyanobakteriyel bloomların etkin yönetimi için gereklidir. Siyanotoksinler, siyanobakterilerin çeşitli cinsleri tarafından üretilen sekonder metabolitler grubu olup algler, bitkiler, hayvanlar ve insan dâhil olmak üzere birçok ökaryotik organizma için son derece zehirlidir. Siyanotoksinler, gen kümeleri şeklinde organize olmuş bir grup gen tarafından kodlanan enzimlerle non-ribozomal olarak sentezlenirler. Siyanotoksin, gelişmenin tüm aşamalarında üretilmektedir. Bu derlemede, insanların siyanotoksinler ile teması ve sağlığa etkileri özetlenmektedir.

Contact of People Wıth Cyanotoxins and Effects on Health

Cyanobacteria is the only group of prokaryotic organisms containing gram negative, 16S rRNA and chlorophyll-a, capable of fixed carbon dioxide and atmospheric nitrogen, photosynthetic, producing organic carbon and oxygen. Recent years changing climatic conditions and increasing human activities in increase the frequency of harmful cyanobacterial “bloom” formation worldwide. Cyanobacterial “blooms” can produce harmful toxins and foul-smelling compounds, creating a threat to drinking and recreational waters. In addition, the formation of “bloom” causes hypoxia and food network degradation. Knowing the role of various environmental factors in the regulation of cyanotoxin synthesis is essential for the effective management of toxic cyanobacterial blooms. Cyanotoxins are a group of secondary metabolites produced by various strains of cyanobacteria and are highly toxic to many eukaryotic organisms, including algae, plants, animals and humans. Cyanotoxins are synthesized non-ribosomally by enzymes encoded by a group of genes organized in gene clusters. Toxin can be produced at all stages of development. In this review, the contact of people with cyanotoxins and their effects on health are summarized.

___

  • Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK, 2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology, 181:441-446.
  • Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, Pflugmacher S, 2004. Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya-Lakes Bogoria. Nakuru and Elmenteita. Journal of Plankton Research, 26(8):925-935.
  • Bartram J, Chorus I, 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. CRC Press.
  • Carmichael WW, Drapeau C, Anderson DM, 2000. Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human dietary use. Journal of applied phycology, 12(6):585-595.
  • Chaurasia A, 2015. Cyanobacterial biodiversity and associated ecosystem services: introduction to the special issue. Biodiversity and Conservation, 24:(4):707-710.
  • Chen J, Dai J, Zhang H, Wang C, Zhou G, Han Z, Liu Z, 2010. Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila). Ecotoxicology, 19(4):796-803.
  • Chen J, Xie P, 2005. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and-RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon, 45(5):615-625.
  • Chorus I, Fastner J, 2001. Recreational exposure to cyanotoxins. Cyanotoxins: Occurrence, Causes. Consequences, pp:190-199.
  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Bergman B, 2005. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proceedings of the National Academy of Sciences, 102(14):5074-5078.
  • Dietrich DR, Fischer A, Michel C, Höger SJ, 2008. Toxin mixture in cyanobacterial blooms–a critical comparison of reality with current procedures employed in human health risk assessment. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, pp. 885-912, Springer, New York, NY.
  • Dillenberg HO, Dehnel MK, 1960. Toxic waterbloom in Saskatchewan, 1959. Canadian Medical Association Journal, 83(22):1151.
  • Draisci R, Ferretti E, Palleschi L, Marchiafava C, 2001. Identification of anatoxins in blue-green algae food supplements using liquid chromatography-tandem mass spectrometry. Food Additives & Contaminants, 18(6):525-531.
  • Drobac D, Tokodi N, Simeunović J, Baltić V, Stanić D, Svirčev Z, 2013. Human exposure to cyanotoxins and their effects on health. Arhiv za higijenu rada i toksikologiju, 64(2):305-315.
  • Ferreira FM, Soler JMF, Fidalgo ML, Fernández-Vila P, 2001. PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-Lever reservoir (Douro river, northern Portugal). Toxicon, 39(6):757-761.
  • Giannuzzi L, Sedan D, Echenique R, Andrinolo D, 2011. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. Marine Drugs, 9(11):2164-2175.
  • Götz J, Probst A, Mistl C, Nitsch RM, Ehler E, 2000. Distinct role of protein phosphatase 2A subunit Cα in the regulation of E-cadherin and β-catenin during development. Mechanisms of development, 93(1-2):83-93.
  • Grosse Y, Baan R, Straif K, Secretan B, Ghissassi FE, Cogliano V, 2006. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet Oncology, 7(8):628-629.
  • Hunter PR, 1998. Cyanobacterial toxins and human health. In Symposium Series-Society for Applied Bacteriology, No. 27.
  • Iwasa M, Yamamoto M, Tanaka Y, Kaito M, Adachi Y, 2002. Spirulina-associated hepatotoxicity. The American journal of gastroenterology, 97(12):3212.
  • Kaebernick M, Neilan BA. 2001. Ecological and molecular investigations of cyanotoxin production. FEMS microbiology ecology, 35(1):1-9.
  • Koreivienė J, Anne O, Kasperovičienė J, Burškytė V, 2014. Cyanotoxin management and human health risk mitigation in recreational waters. Environmental monitoring and assessment, 186(7):4443-4459.
  • Li XY, Wang J, Liang JB, Liu YD, 2007. Toxicity of microcystins in the isolated hepatocytes of common carp (Cyprinus carpio L.). Ecotoxicology and environmental safety, 67(3):447-451.
  • Lun Z, Hai Y, Kun C, 2002. Relationship between microcystin in drinking water and colorectal cancer. Biomedical and Environmental Sciences, 15(2):166-171.
  • Maatouk I, Bouaïcha N, Plessis MJ, Périn F, 2004. Detection by 32P-postlabelling of 8-oxo-7, 8-dihydro-2′-deoxyguanosine in DNA as biomarker of microcystin-LR-and nodularin-induced DNA damage in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 564(1):9-20.
  • Malbrouck C, Kestemont P, 2006. Effects of microcystins on fish. Environmental Toxicology and Chemistry: An International Journal, 25(1):72-86.
  • Metcalf JS, Richer R, Cox PA, Codd GA, 2012. Cyanotoxins in desert environments may present a risk to human health. Science of the Total Environment, 421:118-123.
  • Mitrovic SM, Allis O, Furey A, James KJ, 2005. Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicology and environmental safety, 61(3):345-352.
  • Negri AP, Bunter O, Jones B, Llewellyn L, 2004. Effects of the bloom-forming alga Trichodesmium erythraeum on the pearl oyster Pinctada maxima. Aquaculture, 232(1-4):91-102.
  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B, 2010. On the chemistry, toxicology and genetics on the Cyanobacterial toxins, Microcystin, nodularin, Saxitoxin and silindrospermopsin. Marine Drugs, 8:(5):1650-1680.
  • Peuthert A, Chakrabarti S, Pflugmacher S, 2007. Uptake of microcystins‐LR and‐LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environmental Toxicology: An International Journal, 22(4):436-442.
  • Romo S, Fernández F, Ouahid Y, Barón-Sola Á, 2012. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake. Environmental monitoring and assessment, 184(2):939-949.
  • Saqrane S, Ouahid Y, El Ghazali I, Oudra B, Bouarab L, del Campo FF, 2009. Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: a laboratory experimental approach. Toxicon, 53(7-8):786-796.
  • Stewart I, Seawright AA, Shaw GR, 2008. Cyanobacterial poisoning in livestock, wild mammals and birds–an overview. In Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, pp. 613-637, New York, NY.
  • Stewart I, Webb PM, Schluter PJ, Shaw GR, 2006. Recreational and occupational field exposure to freshwater cyanobacteria-a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment. Environmental Health, 5(1):6.
  • Svırčev Z, Krstıč S, Miladinov-Mikov M, Baltıč V, Vıdovıč M, 2009. Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. Journal of Environmental Science and Health Part C, 27(1):36-55.
  • Svirčev Z, Baltić V, Gantar M, Juković M, Stojanović D, Baltić M, 2010. Molecular aspects of microcystin-induced hepatotoxicity and hepatocarcinogenesis. Journal of Environmental Science and Health Part C, 28(1):39-59.
  • Thajuddin N, Subramanian G, 2005. Cyanobacterial biodiversity and potential applications in biotechnology. Current Scıence, 89:(1):47-57.
  • Vijayakumar S, Menakha M, 2015. Pharmaceutical applications of cyanobacteria-A review. Journal of Acute Medicine, 5:(1):15-23.
  • White SH, Duivenvoorden LJ, Fabbro LD, Eaglesham GK, 2006. Influence of intracellular toxin concentrations on cylindrospermopsin bioaccumulation in a freshwater gastropod (Melanoides tuberculata). Toxicon, 47(5):497-509.
  • Xie L, Xie P, Guo L, Li L, Miyabara Y, Park HD, 2005. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environmental Toxicology: An International Journal, 20(3):293-300.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -