Homojen 3D Nano Boşluklu Yapılar ile Şarj Edilebilir Pillerde Performans Artışı

Bu çalışma, günümüzde enerji sistemlerinin daha yüksek kapasiteli ve performanslı üretilmesini sağlayabilecek ters opal metodunun piller üzerindeki kapasite artışını göstermektedir. Ters opal metodu ile yeniden şarj-edilebilir pil elektrotlarının kapasitelerinin yaklaşık 2.5 kat arttığı ve bu artış sağlanırken daha küçük boyutlu ve daha ince katmanlı elektrotların hazırlanabildiği görülmüştür. Ters opal metodu ile elektrotlar homojen 3D boşluklu bir yapıya sahiptir. Bu metot ile küresel boşluklu yapıda daha yüksek yüzey alanına sahip ve kullanılan opallerin çaplarına bağlı olarak nanometre seviyesinde elektrot tabakaları oluşturmaktadır. Ters opal metodunda üretilen nanometre seviyesindeki kalınlığa sahip bu yapılar ayrıca iyon transferini hızlandırarak pillerin daha hızlı şarj edilmesi imkânı da sağlamaktadır.

Enhancement Performance of Rechargeable Batteries via Homogenous 3D Nano Cavity Structure

This study shows the capacity improvement of the battery by inverse opal method, which can provides to produce much effective energy systems with higher capacity and performance. It has been seen that the capacity of the rechargeable battery electrodes is increased by about 2.5 times via inverse opal method, which method also provides smaller and thinner layered electrode production. The electrodes have homogeneous 3D cavity structure via inverse opal method. The spherical cavity structure has higher surface area and what forming electrode layers at the nanometer levels depending on the diameters of the used opals. These structures also provide speed up ion transfers and faster charging of the batteries by nanometer level of thickness via inverse opal method.

___

  • Alvaro B, Emmanuel C, Serguei G, Marta I, Sajeev J, Stephen WL, Cefe L, Francisco M, Hernan M, Jessica PM, Geoffrey AO, Ovidiu T, Henry MvD, 2000. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405: 437–440.
  • Armstrong E, O'Sullivan M, O'Connell J, Holmes JD, and O'Dwyer C, 2015. 3D Vanadium Oxide Inverse Opal Growth by Electrodeposition. Journal of Electrochemical Society, 162: D605-D612.
  • Demirel S., 2017. Development of Ti-based Anode Materials for Li-ion and Na-ion Batteries. Ph. D. thesis. Inonu University.
  • Elizabeth R, Ayan G, Peter K, Michael TH, and James NC, 2013. Self-Assembly of Virus-Structured High Surface Area Nanomaterials and Their Application as Battery Electrodes. Langmuir, 24: 906–912.
  • Guangyuan Z, Qianfan Z, Judy JC, Yuan Y, Weiyang L, Zhi WS, and Yi C, 2013. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries. Nano Letters, 13: 1265–1270.
  • Hai YX, Hao W, Zhi QS, Yao WW, Hui Y, Masahiro Y, 2004. Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochimica Acta, 49: 349-353.
  • Hengguo W, Delong M, Xiaolei H, Yun H, and Xinbo Z, 2012. General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance. Scientific Reports, 2: 701.
  • Huigang Z and Paul VB, 2012. Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes. Nano Letters, 12: 2778–2783.
  • Huigang Z, Xindi Y, Paul VB, 2011. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotechnology, 6: 277–281.
  • Hyejung K, Minho S, Mi-Hee P, Jaephil C, 2010. A Critical Size of Silicon Nano‐Anodes for Lithium Rechargeable Batteries. Angewandte Chemie, 49: 2146-2149.
  • McNulty D, Geaney H, Armstrong E, and O'Dwyer C, 2016. High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes, Journal of Materials Chemistry A, DOI: 10.1039/c6ta00338a.
  • Pallavidino L, Santamaria DR, Geobaldo F, Balestreri A, Bajoni D, Galli M, Andreani LC, Ricciardi C, Celasco E, Quaglio M, Giorgis F, 2006. Synthesis, characterization and modelling of silicon based opals. Journal of Non-Crystalline Solids, 352: 1425-1429.
  • Qifeng Z, Hua X, Haibo D, Ling B, Zhongde M, Zhuoying X, Yuanjin Z, Zhongze G, 2013. Preparation of conducting polymer inverse opals and its application as ammonia sensor Colloids and Surfaces A: Physicochemical and Engineering Aspects, 4: 59-63.
  • Ruhl T, Spahn P, Hermann C, Jamois C, Hess O, 2006. Double‐Inverse‐Opal Photonic Crystals: The Route to Photonic Bandgap Switching. Advanced Functional Materials, 16: 885-890.
  • Wakihara M, Yamamoto O, 2007. Lithium Ion Batteries: Fundamentals and Performance. Tokyo: Wiley.
  • Yanguang L, Bing T, and Yiying W, 2008. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Letters, 8: 265–270.