Endüstriyel Atıksulardan Alüminyum Sülfat Koagülantı Kullanılarak Kimyasal Koagülasyon Yöntemi İle Bor Giderimi

Dünyada birçok endüstrinin atıksularında sınır değerlerin üstünde bor bulunmaktadır. Bu çalışmada borun endüstriyel atıksulardan kimyasal koagülasyon yöntemi ile giderimi ve bu prosese etki eden çeşitli parametreler incelenmiştir. Denemelerde koagülant olarak alüminyum sülfat kullanılmıştır. Bor gideriminde, başlangıç bor konsantrasyonu, karıştırma hızı, çözeltinin başlangıç pH’sı ve koagülant maddenin cinsi ve dozajı parametreleri incelenmiştir. Optimum karıştırma hızı için yapılan denemelerde, hızlı karıştırma hızı için 120 dev dak-1 ve yavaş karıştırma hızı için 30 dev dak-1 karıştırma hızı olarak seçilmiştir. Kimyasal koagülasyon prosesine etki eden en önemli parametrenin pH olduğu görülmüştür. Proses süresince farklı koagülant maddeleri ve dozajları uygulanmıştır. Çözeltilerin çıkış pH’ları 7-9 arasındaki değerlerde olduğunda, bor giderim veriminin en yüksek olduğu görülmüştür. Başlangıç bor konsantrasyonu artışıyla da bor giderim veriminin arttığı gözlemlenmiştir. Denemeler sonucunda pH’ya bağlı olarak, alüminyum sülfatın, giderim verimi üzerinde etkin olmadığı ve %35’lere kadar bor giderilebileceği görülmüştür

Boron Removal From Industrial Waste Waters By Using Aluminum Sulfate Coagulant With Chemical Methods

Removal of boron from the industrial waste waters by chemical coagulation methods and effectingparameters of the process has been investigated by using aluminum sulfate (Al2(SO4)3) as coagulant. Initial boronconcentration, mixing speed, initial pH of the solution and types of the coagulant materials and dosing parametershad been considered in the boron removal. In the experiments for optimum mixing speeds, 120 rpm was chosenfor the fast mixing speed and 30 rpm was chosen for the slow mixing speed. pH has been found the most importanteffecting parameter to the coagulation process. Different coagulant materials and dosing have been applied duringthe experimental trials. The highest boron removal yield has been observed in the initial pH values of 7-9 andit has been determined that increasing the initial concentration of boron has increased the yield. Depending on thepH values, aluminum sulfate was not effective on the removal yield and it has also been recorded that the boron removalwould be reached within 35%.

___

  • Alkan, U., Teksoy, A., Savas Baskaya, H., 2006. Determination of optimun coagulation conditions for the removal of natural organic matter from surface waters. Ekoloji, 15(59): 18-26.
  • Anderson, J.L., Eyring, E.M., Whittaker, M.P., 1964.Temperature jump rate studies of polyborate formation in aqueous boric acid. J Phys Chem., 68: 1128-1132.
  • Badruk, M., Kabay, N., Demircioglu, M., Mordogan, H., Ipekoglu, U., 1999a Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. I. Batch sorption–elution studies. Separation Science and Technology, 34: 2553–2995.
  • Badruk, M., Kabay, N., Demircioglu, M., Mordogan, H., Ipekoglu, U., 1999b Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. II. column sorption-elution studies. Separation Science and Technology, 34:2981–2569.
  • Demircioğlu, A., 1972. Bor Titrasyonlarına Kısa Bir Bakış, Kimya ve Sanayii, XX, s: 89.
  • Dilek, C., Ozbelge, H.O., Bicak, N., and Yilmaz, L.2002 Removal of boron from aqueous solutions by continuous polymer enhanced ultrafiltration with polyvinyl alcohol. Separation Science and Technology, 37: 1257-1271.
  • Eckenfelder, W.W., 2000. Industrial Water Pollution Control. McGraw Hill International Edition, Environmental Engineering Series, p: 124-138.
  • Hascakır, B., Dolgen, D., 2008 Utilization of Clay Minerals in Wastewater Treatment: Organic Matter Removal with Kaolinite. Ekoloji, 17(66): 47-54.
  • Jiang, J., Graham, N., Andre, C., Kelsall, G., Brandon, N., 2002, Laboratuary study of electrocoagulation-flotation for water treatment. Water Research, 36: 4064-4078.
  • Juang, W.N., Kun, J.L., 1993, Characteristic of boron adsorption on strong-base anion Exchange resin. Ann. Nucl. Energy, 20(7): 455-462
  • Karahan, S., Yurdakoç, M., Seki, Y., Yurdakoç, K., 2006. Removal of boron from aqueous solution by clays and modified clays. Journal of Colloid and Interface Science, 293: 36-42.
  • Matsui, Y., Matsushita, T., Sakuma, S., Gojo, T., Mamiya, T., Suzuoki, H., Inoue, T., 2003. Virus inactivation in aluminum and polyaluminum coagulation. Environmental Scicence and Technology, 37: 5175–5180.
  • Nadav, N., 1999. Boron removal from seawater reverse osmosis permeate utilizing selective ion exchange resin. Desalination, 124: 131-135.
  • Ozturk, N., Kavak, D., 2005 Adsorption of boron from aqueous solutions using fly ash: Batch and column studies. Journal of Hazardous Materials, 127: 81-88.
  • Polat, H., Vengosh, A., Pankratov, I., Polat, M., 2004. A new methodology for removal of boron from water by coal and fly ash. Desalination, 164: 173-188.
  • Rajakoviç, L.V., Ristiç, M.D., 1996. Sorption of boric acid and borax by activated carbon impregnated with various compounds. Carbon, 34, 6769-774.
  • Sahin, S., 1996. Mathematical model of boron adsorption by ion exchange. Models in Chemistry, 133:143–150.
  • Schilde, U., Uhlemenn, E., 1991. Extraction of boric acid from brines by ion exchange. International Journal of Mineral Processing, 32: 295–305.
  • Simonnot, M.O, Castel, C., Nicolaie, M., Rosin, C., Sardin, M.L., Jauffret, H., 2000. Boron removal from drinking water with a boron selective resin: is the treatment really selective. Water Research, 34: 109–116.
  • Taniguchi M., Fusaoka Y., Nishikawa T., Kurihara, M., 2004. Boron removal in RO seawater desalination. Desalination, 167: 419–426.
  • Wanga, Y, Zhoua., W.Z, Gaoa, B.Y., Xua, X.M, Xub, G.Y., 2009. The effect of total hardness on the coagulation performance of aluminum salts with different Al species. Seperation and Purification Technology, 457-462.
  • Yazicigil, Z., Oztekin, Y., 2006. Boron removal by electrodialysis with anion-exchange membranes. Desalination, 190:71-78.
  • Yılmaz, A.E., Boncukcuoglu, R., Yılmaz, M.T., Kocakerim, M.M., 2005. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor. Journal of Hazardous Materials, 117: 221–226.
  • Yurdakoç, M., Seki, Y., Karahan, S., Yurdakoç, K., 2005. Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80. Journal of Colloid and Interface Science, 286: 440-446.