Determination of Carbon, Nitrogen and Phosphorus Stocks and Stoichiometry in Broadleaf Mixed Forest Soil and Litterfall: A case study in Oltu district, Erzurum

It is necessary to provide plant nutrients in soil at optimal levels for the sustainability of forest ecosystems. The soil stoichiometry of total carbon (C), total nitrogen (N) and total phosphorus (P) allow monitoring and assessment of ecosystem structures and variations in nutrient cycle. Studies on determination of C-N-P stoichiometry in forest ecosystems, however, are somewhat inadequate. This study aims to determine change of C-N-P stoichiometry depending on litterfall condition and soil depth in broadleaf mixed forest (Europen Hophornbeam - Syspirensis Oak) soil and the C-N-P stocks in soil. In this context, we were determined both C-N-P stoichiometry and C-N-P stock in soil and litterfall by conducting field studied at 10 different points in the Broad Leaf Mixed Forest of Erzurum-Oltu district. The results indicated that as the depth of the soil increased, the C-N ratio decreased, whereas the N-P and the C-P ratios increased. Positive correlations were observed between C-N in all soil depths, but negative correlations between C-P and N-P. The correlation coefficients between C and N (r0-10= 0.58, r10-20= 0.52 and r20-30= 0.44) and between C and P (r0-10= 0.64, r10-20= 0.54 and r20-30= 0.42) and between N and P (r0-10= 0.52, r10-20= 0.35 and r20-30= 0.36) decreased as soil depth increased. The mean scores of the C-N-P stocks were determined as 5.9, 1.3, and 0.2 ton ha-1 in litterfall and 157.68, 24.60, and 2.68 tons ha-1 in soil, respectively. It is important to rehabilitate degraded forests and minimize the negative effects of erosion in order to increase the amount of carbon captured in forest soils. In addition, the variable C: N: P stoichiometry in forest ecosystems; It can be considered as a leading indicator of soil degradation and drought and climate changes.

___

  • Allison LE, Moodie CD (1965) Carbonate. In: Black et al. (eds.), Methods of Soil Analysis, Part 2, Agronomy, American Society of Agronomy, Wisconsin.
  • Alberti, G., Vicca, S., Inglima, I., Belelli-Marchesini, L., Genesio, L., Miglietta, F., Cotrufo, M. (2015). Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests. [Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests]. iForest - Biogeosciences and Forestry, 8(2), 195-206. doi:10.3832ifor1196-008
  • Andres, E. G. (2019). Interactions between Climate and Nutrient Cycles on Forest Response to Global Change: The Role of Mixed Forests. Forests, 10(8). doi:ARTN 609 10.3390/f10080609
  • Augusto, L., Delerue, F., Gallet‐Budynek, A., & Achat, D. L. (2013). Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta‐analysis approach. Global Biogeochemical Cycles, 27(3), 804-815.
  • Barantal, S., Schimann, H., Fromin, N., & Hättenschwiler, S. (2014). C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition. Proceedings of the Royal Society B: Biological Sciences, 281(1796), 20141682.
  • Bui, E. N., & Henderson, B. L. (2013). C: N: P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 373(1-2), 553-568.
  • Chapman, H. D., & Pratt, P. F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68.
  • Chen, L. Y., Li, P., & Yang, Y. H. (2016). Dynamic patterns of nitrogen: Phosphorus ratios in forest soils of China under changing environment. Journal of Geophysical Research-Biogeosciences, 121(9), 2410-2421. doi:10.1002/2016jg003352
  • Çomaklı, E., & Bingöl, M. S. (2021). Heavy metal accumulation of urban Scots pine (Pinus sylvestris L.) plantation. Environmental Monitoring and Assessment, 193(4), 1-13. https://doi.org/10.1007/s10661-021-08921-6
  • Deng, M., Liu, L., Sun, Z., Piao, S., Ma, Y., Chen, Y., . . . Li, P. (2016). Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis‐rupprechtii plantations. New Phytologist, 212(4), 1019-1029.
  • FAO. 2020. Soil testing methods – Global Soil Doctors Programme - A farmer-to-farmer training programme. Rome. https://doi.org/10.4060/ca2796en
  • Frizano, J., Johnson, A. H., Vann, D. R., & Scatena, F. N. (2002). Soil Phosphorus Fractionation during Forest Development on Landslide Scars in the Luquillo Mountains, Puerto Rico 1. Biotropica, 34(1), 17-26.
  • García-Oliva, F., Lancho, J. F. G., Montano, N. M., & Islas, P. (2006). Soil carbon and nitrogen dynamics followed by a forest-to-pasture conversion in western Mexico. Agroforestry Systems, 66(2), 93-100.
  • Gee, G. W., Bauder, J., & Klute, A. (1986). Methods of soil analysis, part 1, physical and mineralogical methods. Soil Science Society of America, American Society of Agronomy.
  • Gough, C. M., Vogel, C. S., Hardiman, B., & Curtis, P. S. (2010). Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession. Forest Ecology and Management, 260(1), 36-41.
  • Gülçur, F. (1974). Topragın Fiziksel ve Kimyasal Analiz Metodları, İstanbul Üniversitesi Orman Fakültesi Yayınları. İ. Ü. Yayın(1970).
  • Güsewell, S., & Verhoeven, J. T. (2006). Litter N: P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant and Soil, 287(1-2), 131-143.
  • Houlton, B. Z., Morford, S. L., & Dahlgren, R. A. (2018). Convergent evidence for widespread rock nitrogen sources in Earth's surface environment. Science, 360(6384), 58-+. doi:ARTN aan4399 10.1126/science.aan4399
  • Hu, Y. L., Zeng, D. H., Fan, Z. P., Chen, G. S., Zhao, Q., & Pepper, D. (2008). Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China. Journal of Arid Environments, 72(12), 2193-2200. doi:10.1016/j.jaridenv.2008.07.007
  • IPCC (Intergovernmental Panel on Climate Change). 2003.Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies, Hayama .http://www.ipcc-nggip.iges.or.jp .
  • Ilg, K., Wellbrock, N., & Lux, W. (2009). Phosphorus supply and cycling at long-term forest monitoring sites in Germany. European journal of forest research, 128(5), 483-492.
  • Ise, T., & Moorcroft, P. R. (2010). Simulating boreal forest dynamics from perspectives of ecophysiology, resource availability, and climate change. Ecological research, 25(3), 501-511.
  • Jackson, M. (1958). Soil chemical analysis.,(Constable & Co Ltd: London).
  • Jiang, Y.-F., Zhong, S., Li, J., Wang, L.-K., & Guo, X. (2018). [Spatial and Temporal Variability of Soil C-to-N Ratio of Yugan County and Its Influencing Factors in the Past 30 Years]. Huan jing ke xue= Huanjing kexue, 39(3), 1386-1395. doi:10.13227/j.hjkx.201706186
  • Jobbagy, E. G., & Jackson, R. B. (2001). The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry, 53(1), 51-77. doi: 10.1023/A:1010760720215
  • Kantarcı, D. (2000). Toprak İlmi (2 ed.). İstanbul: İstanbul Üniversitesi Orman Fakültesi Yayınları.
  • Koerselman, W., & Meuleman, A. F. (1996). The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of applied Ecology, 1441-1450.
  • Lal, R. (2009). Sequestering Carbon in Soils of Arid Ecosystems. Land Degradation & Development, 20(4), 441-454. doi:10.1002/ldr.934
  • Liu, L., Zhang, L., Pan, J., Niu, J., Yuan, X., Hu, S., . . . Deng, B. (2020). Soil CNP pools and stoichiometry as affected by intensive management of camellia oleifera plantations. PloS one, 15(9), e0238227.
  • Liu, X., Yang, T., Wang, Q., Huang, F., & Li, L. (2018). Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis. Science of the Total Environment, 618, 1658-1664.
  • Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., . . . Parton, W. J. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54(8), 731-739.
  • Magill, A. H., & Aber, J. D. (2000). Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biology and Biochemistry, 32(5), 603-613.
  • Makineci, E. (2005). Sapsız Meşe (Quercus petrea (Matlusch) Lieb.) Baltalık Ormanında Aralamalarin Çap Artımı ve Bazı Toprak Özelliklerine Etkileri. Türkiye Ormancılık Dergisi, 6(2), 1-10.
  • Morford, S. L., Houlton, B. Z., & Dahlgren, R. A. (2016). Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Global Biogeochemical Cycles, 30(2), 333-349. doi:10.1002/2015gb005283
  • Ostrowska, A., & Porębska, G. (2015). Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecological Indicators, 49, 104-109.
  • Paul, E. A. (2015). Soil Microbiology, Ecology, and Biochemistry (4 ed.). London: Elsevier Inc.
  • Pourhassan, N., Bruno, S., Jewell, M. D., Shipley, B., Roy, S., & Bellenger, J.-P. (2016). Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada. Geoderma, 273, 25-31.
  • Qiao, Y., Wang, J., Liu, H. M., Huang, K., Yang, Q. S., Lu, R. L., . . . Xia, J. Y. (2020). Depth-dependent soil C-N-P stoichiometry in a mature subtropical broadleaf forest. Geoderma, 370. doi:ARTN 114357 10.1016/j.geoderma.2020.114357
  • Qualls, R. G., Haines, B. L., & Swank, W. T. (1991). Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology, 72(1), 254-266.
  • Rastetter, E. B., Ågren, G. I., & Shaver, G. R. (1997). Responses of N‐limited ecosystems to increased CO2: A balanced‐nutrition, coupled‐element‐cycles model. Ecological Applications, 7(2), 444-460.
  • Rayment, G., & Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods: Inkata Press Pty Ltd.
  • Reyserhove, L., Muylaert, K., Vanoverberghe, I., & Decaestecker, E. (2017). Synergistic effects of dual parasitism in Daphnia magna under nutrient limitation. Belgian Journal of Zoology, 147(1).
  • Sarıyıldız, T., Parlak, S., & Tanı, M. (2020). Bursa-Karacabey subasar ormanlarının kavak ve fıstıkçamı plantasyonlarına dönüştürülmesinin toprak karbon ve azot stoklarına etkisinin araştırılması. Ağaç ve Orman, 1(1), 28-35.
  • Silveira, M. L., Reddy, K. R., & Comerford, N. B. (2011). Litter decomposition and soluble carbon, nitrogen, and phosphorus release in a forest ecosystem. Open J Soil Sci, 1, 86-96.
  • Song, Q.-n., Ouyang, M., Yang, Q.-p., Lu, H., Yang, G.-y., Chen, F.-s., & Shi, J.-M. (2016). Degradation of litter quality and decline of soil nitrogen mineralization after moso bamboo (Phyllostachys pubscens) expansion to neighboring broadleaved forest in subtropical China. Plant and Soil, 404(1-2), 113-124.
  • Tan, Q. Q., & Wang, G. A. (2016). Decoupling of nutrient element cycles in soil and plants across an altitude gradient. Scientific Reports, 6. doi:ARTN 34875 10.1038/srep34875
  • Tang, Z., Xu, W., Zhou, G., Bai, Y., Li, J., Tang, X., . . . Xiong, G. (2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, 115(16), 4033-4038.
  • Tashi, S., Singh, B., Keitel, C., & Adams, M. (2016). Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta‐analysis of global data. Global Change Biology, 22(6), 2255-2268.
  • Tipping, E., Somerville, C. J., & Luster, J. (2016). The C: N: P: S stoichiometry of soil organic matter. Biogeochemistry, 130(1-2), 117-131.
  • Tolunay, D., & Çömez, A. (2007). Orman Topraklarında Karbon Depolanması ve Türkiye’deki Durum. Paper presented at the Küresel İklim Değişimi ve Su Sorunlarının Çözümünde Ormanlar, İstanbul.
  • Wang, X. Y., Ma, Q. L., Jin, H. J., Fan, B. L., Wang, D. B., & Lin, H. L. (2019). Change in Characteristics of Soil Carbon and Nitrogen during the Succession of Nitraria Tangutorum in an Arid Desert Area. Sustainability, 11(4). doi:ARTN 1146 10.3390/su11041146
  • Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R., Mortimer, S. R., Shiel, R. S., . . . Bardgett, R. D. (2016). Legacy effects of grassland management on soil carbon to depth. Global Change Biology, 22(8), 2929-2938.
  • Wu, A.-P., Liu, J., He, F.-F., Wang, Y.-H., Zhang, X.-J., Duan, X.-D., . . . Qian, Z.-Y. (2018). Negative relationship between diversity and productivity under plant invasion. Ecological research, 33(5), 949-957.
  • Xia, S.-W., Chen, J., Schaefer, D., & Detto, M. (2015). Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant and Soil, 391(1-2), 51-61.
  • Xie, J., Fang, H., Zhang, Q., Chen, M., Xu, X., Pan, J., . . . Zhang, L. (2019). Understory Plant Functional Types Alter Stoichiometry Correlations between Litter and Soil in Chinese Fir Plantations with N and P Addition. Forests, 10(9), 742.
  • Yang, Z. P., Baoyin, T., Minggagud, H., Sun, H. P., & Li, F. Y. (2017). Recovery succession drives the convergence, and grazing versus fencing drives the divergence of plant and soil N/P stoichiometry in a semiarid steppe of Inner Mongolia. Plant and Soil, 420(1-2), 303-314. doi:10.1007/s11104-017-3404-9
  • Zarin, D. J., & Johnson, A. H. (1995). Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico. Soil Science Society of America Journal, 59(5), 1444-1452.
  • Zechmeister-Boltenstern, S., Keiblinger, K. M., Mooshammer, M., Penuelas, J., Richter, A., Sardans, J., & Wanek, W. (2015). The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 85(2), 133-155. doi:10.1890/14-0777.1
  • Zeller, B., Colin-Belgrand, M., Dambrine, E., Martin, F., & Bottner, P. (2000). Decomposition of 15 N-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia, 123(4), 550-559.
  • Zhang, C., Wang, Z., Ju, W., & Ren, C. (2011). Spatial and temporal variability of soil C/N ratio in Songnen plain maize belt. Huan jing ke xue= Huanjing kexue, 32(5), 1407-1414.
  • Zhong, Z., Zhang, X., Wang, X., Dai, Y., Chen, Z., Han, X., . . . Wang, X. (2020). C: N: P stoichiometries explain soil organic carbon accumulation during afforestation. Nutrient Cycling in Agroecosystems, 1-17.