Deneysel Florozis Oluştulmuş Ratlarda Kitosan ve Kitosan Oligosakkaridin Serum ve Doku Siyalik Asit Düzeyleri Üzerindeki Etkileri

Bu çalışmada deneysel florozisli ratlarda, kitosan (CH) ve kitosan oligosakkaritin (COS), serum ve dokularda (karaciğer, böbrek, beyin ve testis) toplam siyalik asit (TSA) düzeyine etkisi araştırılmıştır. Gruplar kontrol, sodyum florür (NaF), NaF + kitosan (NaF + CH), NaF + kitosan oligosakkarit (NaF + COS), kitosan (CH) ve kitosan oligosakkarit (COS) olarak oluşturuldu. NaF gruplarının içme suyu 100 ppm sodyum florür konsantrasyonunda hazırlandı. Deney gruplarında, doksan gün süreyle kitosan ve kitosan oligosakkarit 250 mg/kg dozunda oral yolla uygulandı. Çalışma sonunda serum ve karaciğer, böbrek, beyin ve testis doku homojenizatlarının TSA düzeyi spektrofotometrik yöntemle belirlendi. Florür uygulanan grupta (NaF), kontrol grubu ile karşılaştırıldığında, serum, karaciğer, böbrek, beyin ve testis dokularında TSA düzeylerinin arttığı görüldü (p<0.05). NaF grubuna göre, NaF+CH grubunda serum seviyelerinde, NaF+COS grubunda ise serum, karaciğer ve böbrek dokularında belirgin düşüş vardı. Beyin dokusu sialik asit düzeyi açısından kontrol ve deney grupları arasında fark olmadığı belirlendi (p>0.05). Sonuç olarak, flor toksikasyonunun, serum ve dokularda hücre hasarına neden olarak, TSA düzeylerinde artışa neden olduğu düşünülebilir. Sunulan çalışmada, CH ve COS'un TSA seviyelerini düşürdüğü gösterilmiştir. Ayrıca bu çalışmada, COS'un TSA seviyesini azaltmada daha etkili olduğu görüldü.

Effects of Chitosan and Chitosan Oligosaccharide on Serum and Tissue Sialic Acid Levels in Experimental Fluorosis

In this study, the effect of chitosan (CH) and chitosan oligosaccharide (COS) on serum and tissue (liver, kidney, brain and testis) total sialic acid (TSA) level was investigated in rats with experimental fluorosis. The groups were formed as control, sodium fluoride (NaF), NaF+chitosan (NaF+CH), NaF+chitosan oligosaccharide (NaF+COS), chitosan (CH) and chitosan oligosaccharide (COS). Drinking water of NaF groups was prepared at a concentration of 100 ppm sodium fluoride. Chitosan and chitosan oligosaccharide were given to Experimental groups as 250 mg/kg dose by gastric gavage for ninety days. At the end of the study, TSA level was determined in serum, liver, kidney, brain and testicular tissues. Compared with the control group, it was found that TSA levels increased in serum, liver, kidney, brain and testis tissues in the group treated with sodium fluoride (p<0.05). According to the NaF group, there was a significant decrease in serum levels in the NaF+CH group and in the serum, liver and kidney tissues in the NaF+COS group. It was determined that there was no difference between the control and experimental groups in terms of brain tissue sialic acid level (p>0.05). In conclusion, it can be thought that fluorine intoxication causes an increase in TSA levels by causing cell damage in serum and tissues. In the study presented, CH and COS have been shown to reduce TSA levels. Also, in this study, COS was found to be more effective in reducing the TSA level.

___

  • Anandan R, Nair PG, Mathew S, (2004). Anti-ulcerogenic effect of chitin and chitosan on mucosal antioxidant defence system in HCl-ethanol-induced ulcer in rats. J Pharm Pharmacol, 56(2): 265-9.
  • Ciftci G, Cenesiz S, Yarim GF, Nisbet O, Nisbet C, Cenesiz M, Guvenc D, (2010). Effect of fluoride exposure on serum glycoprotein pattern and sialic acid level in rabbits. Biol Trace Elem Res, 133(1): 51.
  • Dobaradaran S, Mahvi AH, Dehdashti S, Abadi DRV, Tehran I, (2008). Drinking water fluoride and child dental caries in Dashtestan, Iran. Fluoride, 41(3): 220-6.
  • Doğan I, Mert H, Irak K, Mert N, (2016). Investigation of antioxidant compounds in fluoroic sheep. . Scientific Works C Series Vet Med 2(1): 23-26.
  • Guan ZZ, Wang YN, Xiao KQ, Dai DY, Chen YH, Liu JL, Sindelar P, Dallner G, (1998). Influence of chronic fluorosis on membrane lipids in rat brain. Neurotoxicol Teratol, 20(5): 537-42.
  • Ito M, Ban A, Ishihara M, (2000). Anti-ulcer effects of chitin and chitosan, healthy foods, in rats. Jpn J Pharmacol, 82(3): 218-25.
  • Jeon TI, Hwang SG, Park NG, Jung YR, Im Shin S, Choi SD, Park DK, (2003). Antioxidative effect of chitosan on chronic carbon tetrachloride induced hepatic injury in rats. Toxicology, 187(1): 67-73.
  • Jha M, Susheela A, Krishna N, Rajyalakshmi K, Venkiah K, (1982). Excessive ingestion of fluoride and the significance of sialic acid: glycosaminoglycans in the serum of rabbit and human subjects. Clin Toxicol, 19(10): 1023-1030.
  • Kaya I, Deveci HA, Ekinci UV, Kaya MM, Alpay M, (2015). The Effect of Ellagic Acid and Sodium Fluoride Intake on Total Sialic Acid Levels and Total Oxidant/Antioxidant Status in Mouse Testicular Tissue. ARRB, 7(5): 329-335.
  • Kazezoğlu C, Usta U, Gökmen SS, (2009). Total and lipid-bound sialic acid levels in experimental myocardial infarction. Journal of Turkish Clinical Biochemistry, 7(1): 7-15.
  • Keser O, Bilal T, (2010). The use of chitosan oligosaccharide in animal nutrition II- Antioxidative, antimicrobial and the other effects. Livestock Studies, 50(1): 41-52.
  • Koçak Y, Gökhan O, Meydan İ, Seçkin H, (2020a). Investigation of Total Flavonoid, DPPH Radical Scavenging, Lipid Peroxidation and Antimicrobial Activity of Allium schoenoprasum L. Plant Growing in Van Region. Yuzuncu Yil University, Agriculture Faculty Journal of Agriculture Science, 30(1): 147-155.
  • Koçak Y, Gökhan O, Suat E, Mercan U, Bakır A, (2020b). Protective Effect of Allium schoenoprasum L. Ethanol Extract on Serum Total Sialic Acid and
  • Lipid Bound Sialic Acid Levels in Experimental Carbon Tetrachloride Toxicity. Van Healty Sciences Journal, 13(1): 25-31.
  • Kurtdede E, Pekcan M, Karagül H, (2018). Free Radicals, Reactive Oxygen Species and Relationship with Oxidative Stress. Atatürk University J. Vet. Sci, 13(3): 373-379.
  • Ma Y, Huang Q, Lv M, Wu Z, Xie Z, Han X, Wang Y, (2014). Chitosan-Zn chelate increases antioxidant enzyme activity and improves immune function in weaned piglets. Biol Trace Elem Res, 158(1): 45-50.
  • Oto G, Ekin S, Özdemir H, Bulduk M, Uyar H, Öksüz E, (2016). The protective role of resveratrol on serum total sialic acid and lipid-bound sialic acid in female rats with chronic fluorosis. Eastern J Med, 21(4): 168.
  • Ozcelik E, Uslu S, Erkasap N, Karimi H, (2014). Protective effect of chitosan treatment against acetaminophen-induced hepatotoxicity. KJMS, 30(6): 286-290.
  • Ramasamy P, Subhapradha N, Shanmugam V, Shanmugam A, (2014). Protective effect of chitosan from Sepia kobiensis (Hoyle 1885) cuttlebone against CCl4 induced hepatic injury. Int J Biol Macromol, 65(559-63.
  • Sharma Y, (1983). Serum sialic acid and ceruloplasmin levels in experimental fluorosis. Toxicol. Lett, 15(1): 1-5.
  • Subhapradha N, Saravanan R, Ramasamy P, Srinivasan A, Shanmugam V, Shanmugam A, (2014). Hepatoprotective effect of β-chitosan from gladius of Sepioteuthis lessoniana against carbon tetrachloride-induced oxidative stress in Wistar rats. Appl. Biochem. Biotechnol., 172(1): 9-20.
  • Sun T, Yao Q, Zhou D, Mao F, (2008). Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg. Med. Chem. Lett, 18(21): 5774-5776.
  • Sydow G, (1985). A simplified quick method for determination of sialic acid in serum. Biomed Biochim Acta, 44(11-12): 1721.
  • Toz H, Değer Y, (2018). The effect of chitosan on the erythrocyte antioxidant potential of lead toxicity-induced rats. Biol Trace Elem Res, 184(114-118.
  • Varol E, Varol S, (2010). Fluorosis as an Environmental Disease and its Effect on Human Health. TAF Prev Med Bull, 9(3): 233-238.
  • Wang Z, Yan Y, Yu X, Li W, Li B, Qin C, (2016). Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice. Int. J. Biol. Macromol, 83(442-449.
  • Wei W, Pang S, Sun D, (2019). The pathogenesis of endemic fluorosis: Research progress in the last 5 years. IJMCM, 23(4): 2333-2342.
  • Yildiz PO, Yangilar F, (2014). The use of chitosan in food industry. JIST, 30(3): 198-206.
  • Yuan W-P, Liu B, Liu C-H, Wang X-J, Zhang M-S, Meng X-M, Xia X-K, (2009). Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats. WJG, 15(11): 1339.
  • Yur F, Mert N, Dede S, Değer Y, Ertekİn A, Mert H, Yașar S, Doğan İ, Ișİk A, (2013). Evaluation of serum lipoprotein and tissue antioxidant levels in sheep with fluorosis. Fluoride, 46(2): 90-96.
  • Yüksek V, Dede S, Taşpınar M, Çetin S, (2017). The Effects Of Certain Vitamins On Apoptosis and DNA Damage in Sodium Fluoride (Naf) Administered Renal And Osteoblast Cell Lines. Fluoride 2017, 50(3): 300-313.
  • Zong C, Yu Y, Song G, Luo T, Li L, Wang X, Qin S, (2012). Chitosan oligosaccharides promote reverse cholesterol transport and expression of scavenger receptor BI and CYP7A1 in mice. Exp Biol Med (Maywood), 237(2): 194-200.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -