BHR Metamateryal Lens Tasarımı

Bu çalışmada Ku band mikroşerit yama anten yönlendirici kazanç iyileştirmesi için Bölünmüş Halka Rezonatör (BHR) metamateryal (MM) lens kullanımı gösterildi. Ku bandında odaklama elde edebilmek için aynı bantta negatif kırılma indisli bir BHR metamateryal lens tasarlanıp referans antenin ışıma doğrultusunda yarım dalga boyu uzaklığına yerleştirilerek benzetim ve ölçüm sonuçları ayrı ayrı elde edildi. Bu şekilde referans antenin yönlendirici kazancında ölçüm sonuçlarına göre 1.52 dBi’lık bir artış olduğu tespit edildi. Bu çalışmada, alt tabaka ve üst tabaka için aynı dielektrik malzemeler kullanılmış ve böylece MM lens tabakasının kazanç artırımına yararlı etkisi daha net olarak gösterilmiştir. Ayrıca düşük anten boyutu için MM lens katmanının toplam boyutu, referans antenin yama boyutuyla hemen hemen aynıdır. Bu çalışmayı literatürdeki benzer diğer çalışmalardan avantajlı kılan bir diğer husus, daha az sayıda metamateryal birim hücreden oluşan lens katmanı kullanılmasıdır.

SRR Metamaterial Lens Design

In this study, the use of Split Ring Resonator SRR metamaterial (MM) lens for Ku band micro-strip patch antenna directivity gain improvement is shown. In order to obtain the focus in the Ku band, a SRR metamaterial lens with a negative refractive index in the same band is designed and placed in the half-wavelength distance of the reference antenna in the radial direction, and the simulation and measurement results are obtained separately. Thus, a 1.52 dBi increase in the directivity gain of the reference antenna is shown according to measurement results. In this study, the same dielectric materials are used for the substrate and superstrate, so that the beneficial effect of the lens layer on the directivity gain improvement is shown more clearly. Moreover, for the low antenna profile, the total size of the MM lens layer is almost the same as the patch size of the reference antenna. Another advantage of this study over other similar studies in the literature is the use of a lens layer consisting of a smaller number of metamaterial unit cells.

___

  • Balanis CA, 2011. Modern Antenna Handbook, John Wiley & Sons publication, Newyork-A.B.D. Cui TJ, 2010. Metamaterials, Springer, Boston-A.B.D.
  • Pendry JB, Holden AJ, Robbins D J, 1996. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76 (25): 4773-4776.
  • Pendry JB, Holden AJ, Robbins DJ, 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11): 2075-2084.
  • Seetharaman S, King G, Hooper IR, Barnes WL, 2017. Electromagnetic interactions in a pair of coupled split-ring resonators. Physical Review B, 96 (8): 1-8.
  • Shelby RA, 2001. Experimental verification of a negative index of refraction. Science, 292 (5514): 77-79.
  • Shi Y, Hao T, Li L, Liang C-H, 2016. An improved NRW method to extract electromagnetic parameters of metamaterials. Microwave Optical Technology Letters, 58 (3): 647-652.
  • Shi Y, Li Z-Y, Li L, Liang C-H, 2016. An electromagnetic parameters extraction method for metamaterials based on phase unwrapping technique. Waves Random Complex Medium, 26 (4): 417-433.
  • Smith DR, 2000. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84 (18): 4184-4187.
  • Tütüncü B, Torpi H, Urul B, 2018. A comparative study on different types of metamaterials for enhancement of microstrip patch antenna directivity at the Ku-band (12 GHz). Turkish Journal Of Electrical Engineering and Computer Sciences, 26 (3): 1171-1179.
  • Tütüncü B, Torpi H, 2017. Omega-shaped metamaterial lens design for microstrip patch antenna performance optimization at 12 GHz. 10th International Conference on Electrical and Electronics Engineering (ELECO), 1-2 Aralık 2017, Bursa
  • Veselago VG, 1968. The electrodynamics of substances with simultaneously negative values of and μ. Soviet physics uspekhi, 10 (4): 509-514.