Bazı Çörek Otu Tohumlarında Fungal Floranın Tespiti

Çörek otu (Nigella sativa L.), Ranunculaceae familyasına bağlı tek yıllık tıbbi ve aromatik bir bitkidir. İçerdiği çeşitli faydalı yağlardan ötürü sağlık sektöründe kullanılan çörek otunun Türkiye’de ki ekim alanları ise gitgide artış göstermektedir. 2012 yılında çörek otu 2.299 da arazide 161 ton üretime sahip iken, 2019 yılı verilerine göre 37.085 da alana yükselmiş olup toplam üretim ise 3.603 tona çıkmıştır. Ülkemizde ise tescil almış tek bir çörek otu çeşidi (Çameli) bulunmakta olup, çörek otu ile ilgili çeşitli ıslah çalışmaları yürütülmektedir. Bu çalışma da ise Tarla Bitkileri Merkez Araştırma Enstitüsüne bağlı İkizce Araştırma Çiftliği, Haymana’da çörek otu ıslah materyallerinden elde edilen çörek otu tohumlarındaki fungal çeşitliliğin tespiti yapılmıştır. 2200 tohum ISTA kurallarına göre (blotter ve deep freeze blotter metodu ile) muamele edilerek 6 farklı fungus cinsi elde edilmiştir ve toplamda 772 tohumda bu funguslar tespit edilmiştir. Bu hastalıklı tohumların 432’si Alternaria sp. (%55.96) , 184’ü Ulocladium sp. (%23.84), 82’si Penicillium sp. (%10.62), 37’si Cladosporium sp. (%4.8), 12’si Fusarium spp. (%1.55), 8’i Rhizopus sp. (%1.04) ve 17’si ise steril fungus (%2.20) olarak tespit edilmiştir.

Determination of Fungal Flora in Some Black Cumin Seeds

Black cumin (Nigella sativa L.) is an annual medicinal and aromatic plant belonging to the Ranunculaceae family. The cultivation areas of black cumin, which is used in the health sector due to the various beneficial oils it contains, are gradually increasing in Turkey. While black cumin had a production of 161 tons on 2,299 da land in 2012, it increased to 37,085 da area according to 2019 data, and the total production increased to 3,603 tons. In our country, there is only one registered black cumin variety (Çameli), and various breeding studies are carried out on black cumin . In this study, the fungal diversity in black cumin seeds obtained from black cumin breeding materials in İkizce Research Farm, Haymana, affiliated to the Field Crops Central Research Institute was determined. 6 different fungi were obtained by treating 2200 seeds according to ISTA rules (blotter and deep freeze blotter method) and 772 diseased seeds were obtained. Of the diseased seeds, 432were Alternaria sp. (55.96%), 184 of them were Ulocladium sp. (23.84%), 82 of them Penicillium sp. (10.62%), 37 of them were Cladosporium sp. (4.8%), 12 of which were Fusarium sp. (1.55%), 8 of them were Rhizopus sp. (1.04%) and 17 (2.20%) were detected as sterile fungi.

___

  • Abdullaeva Y, Ambika Manirajan B, Honermeier, B Schnell S, Cardinale M, 2021. Domestication Affects the Composition, Diversity, and Co-Occurrence of the Cereal Seed Microbiota. Journal of Advanced Research, 31: 75-86.
  • Al-Zubaide NA, Al-Kurtany AES, Alwa DS, 2014. Investigation of the Fungi Adherent to Black Cumin Seed (Nigella sativa L.) and Their Effects on Germination Seed. Diyala Journal for Pure Sciences, 10 (1).
  • Anonim, 2021. TÜİK, Bitkisel Üretim İstatistikleri, https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-2.Tahmini-2021-37248 (Erişim tarihi:16.11.2021)
  • Anwar A, Ansari AR, 2016. Studies on Seed Mycoflora of Nigella sativa L. During Pre Harvest, Post Harvest and Storage Conditions. International Journal of Science and Research, 7 (2).
  • Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacques MA, 2015. Emergence Shapes the Structure of the Seed Microbiota. Applied and Environmental Microbiology, 81 (4): 1257-1266.
  • Bever JD, Mangan SA, Alexander, HM, 2015. Maintenance of Plant Species Diversity by Pathogens. Annual Review of Ecology, Evolution, and Systematics, 46 (1): 305-325.
  • Booth C, 1977. Fusarium: Laboratory Guide to the Identification of the Major Species. Commonwealth Mycological Institution Kew-Surrey.
  • Chouhan GK, Verma JP, Jaiswal DK, Mukherjee A, Singh S, de Araujo Pereira AP, Liu H, Abd_Allah EF, Singh BK, 2021. Phytomicrobiome for Promoting Sustainable Agriculture and Food Security: Opportunities, Challenges, and Solutions. Microbiological Research, 248: 126763.
  • Elwakil MA, Ghoneem KM, 1999. Detection and Location of Seed-Borne Fungi of Black Cumin and Their Transmission in Seedlings. Pakistan Journal of Biological Sciences, 2 (2): 559-564.
  • Fatima S, Khot YC, 2015. Studies on Fungal Population of Cumin (Nigella sativa L.) From Different Parts of Marathwada. Knowledge Scholar, 2 (2).
  • Forouzanfar F, Bazzaz BSF, Hosseinzadeh H, 2014. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iranian Journal of Basic Medical Sciences, 17 (12): 929-938.
  • Goreja WG, 2003. Black seed: Nature’s Miracle Remedy. Karger Publishers.
  • Gürer M (Butin, H.), 2000. Orman Ağaçlarında Çiçek ve Tohum Hastalıkları. Orman Ağaçları ve Tohumları Islah Araştırma Müdürlüğü Yayınları. Sayı: 1, Ankara.
  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A, 2015. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 79 (3): 293-320.
  • Hemapriya M, Nataraja KN, Suryanarayanan TS, Shaanker RU, 2020. Threshing Yards: Graveyard of Maternally Borne Seed Microbiome?. Trends in Ecology & Evolution, 35 (11): 965-968.
  • International Seed Testing Association, 1999. International rules for seed testing. Seed Science and Technology.
  • Kim H, Lee YH, 2021. Spatiotemporal Assembly of Bacterial and Fungal Communities of Seed-Seedling-Adult in Rice. Frontiers in Microbiology, 12: 708475.
  • Latz MAC, Kerrn MH, Sørensen H, Collinge DB, Jensen B, Brown, JKM, Madsen AM, Jørgensen HJL, 2021. Succession of the Fungal Endophytic Microbiome of Wheat is Dependent on Tissue-Specific İnteractions between Host Genotype and Environment. Science of The Total Environment, 759: 143804.
  • Morales-Moreira ZP, Helgason BL, Germida JJ, 2021. Crop, Genotype, and Field Environmental Conditions Shape Bacterial and Fungal Seed Epiphytic Microbiomes. Canadian Journal of Microbiology, 67 (2): 161-173.
  • Mukherjee A, Singh BK, Verma JP, 2020. Harnessing Chickpea (Cicer arietinum L.) Seed Endophytes for Enhancing Plant Growth Attributes and Bio-Controlling Against Fusarium sp. Microbiological Research, 237: 126469.
  • Nelson EB, 2004. Microbial Dynamics and Interactions in the Spermosphere. Annual Review of Phytopathology, 42 (1): 271-309.
  • Nelson EB, 2017. The Seed Microbiome: Origins, Interactions, And Impacts. Plant and Soil, 422 (1-2): 7-34.
  • Nelson PE, Toussoun TA, Marasas WFO, 1983. Fusarium Species : an Illustrated Manual for Identification. Pennsylvania State University Press. University Park (Pa.).
  • Radchuk V, Borisjuk L, 2014. Physical, Metabolic and Developmental Functions of the Seed Coat. Frontiers in Plant Science, 5.
  • Randhawa MA, Alghamdi MS, 2011. Anticancer Activity of Nigella sativa (Black Seed) — A Review. The American Journal of Chinese Medicine, 39 (06): 1075-1091.
  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ, 2018. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Frontiers in Plant Science, 9: 24.