Agaricus campestris Metanol Ekstraktının Yağ Asidi Kompozisyonu ve Terapötik Potansiyelinin Araştırılması

Yapılan bilimsel araştırmalar mantarların çok umut verici farmakolojik potansiyele sahip olduğuna işaret etmektedir. Agaricus campestris, önemli biyoaktiviteye sahip yenilebilir bir mantar türüdür. Bu çalışmada, A. campestris metanol ekstraktının (AC) antioksidan ve antiproliferatif aktiviteleri ile yağ asidi kompozisyonunun değerlendirilmesi amaçlanmıştır. AC içeriğindeki yağ asitlerinin kantitatif analizi GC-MS spektrometresi ile değerlendirilmiştir. Antioksidan aktivitenin belirlemesi için ise DPPH serbest radikali giderme testi, ABTS katyon radikali giderme aktivitesi, ferrik iyonlarını indirgeme testi ve Ferröz iyonlarını şelatlama testleri kullanılmıştır. AC ekstraktının antiproliferatif etkisi ise insan kolon (HT-29), meme (MCF-7) ve beyin (U373) kanseri hücre hatlarında zaman ve doz bağımlı olarak WST-1 hücre canlılığı analizi ile belirlenmiştir. AC içeriğinde baskın bileşenler olarak doymamış yağ asidi olan linoleik asit (18:2, ω-6) %56.45 oranında ve doymuş yağ asidi olan palmitik asit (16:0) %28.74 oranında analiz edilmiştir. Antioksidan aktivite parametreleri geniş konsantrasyon aralıklarında değerlendirildiğinde, artan konsantrasyon ile lineer bir antioksidan aktivite artışı gözlendi. AC 24 saatlik tedavide HT-29 hücrelerinde 52.62 μg mL-1 IC50 değeri ile en yüksek antiproliferatif etkiyi göstermiştir. Bu bulgular, A. campestris hakkında daha fazla araştırma yapmak için ilginç veriler ortaya koymaktadır, ve özellikle kanser hücreleri üzerindeki güçlü antiproliferatif potansiyel mantarın daha fazla araştırılmaya değer olduğunu göstermektedir.

Investigation of Fatty Acid Composition and Therapeutic Potential of Methanol Extract of Agaricus campestris

Recent reports indicate that mushrooms have very promising pharmacological potential. Agaricus campestris is an edible fungus species with bio-activity. This study aimed to screen the anti-oxidant, anti-proliferative activities, and fatty acid composition of methanol extract of A. campestris (AC). The quantitative analysis of fatty acids of AC was evaluated by GC-MS spectrometer. For the determination of antioxidant activity, DPPH free radical scavenging test, ABTS radical scavenging activity, Ferric ions reduction assay and Ferrous ions chelation assays were used. The antiproliferative effect of AC was determined by the time and dose dependent with WST-1 cell viability analysis in human colon (HT-29), breast (MCF-7) and brain (U373) cancer cell lines. Linoleic acid (18: 2, ω-6), which is the unsaturated fatty acid, was analyzed at 56.45% and the saturated fatty acid palmitic acid (16: 0) was analyzed at 28.74% as the major components in AC. It was observed that AC, whose antioxidant activity parameters were evaluated in wide concentration ranges, displayed a linear increase in antioxidant activity with increasing concentration. AC showed the highest antiproliferative effect in HT-29 cells with an IC50 value of 52.62 μg mL-1 for 24 h treatment. These results provide interesting data for further research on A. campestris, and its strong antiproliferative potential particularly on cancer cells, indicates that the mushroom is worth further investigation.

___

  • Akata I, Ergonul B, Kalyoncu F, 2012. Chemical compositions and antioxidant activities of 16 wild edible mushroom species grown in Anatolia. International Journal of Pharmacology, 8(2): 134-138.
  • Akata I, Zengin G, Picot CMN, Mahomoodally MF, 2019. Enzyme inhibitory and antioxidant properties of six mushroom species from the Agaricaceae family. South African Journal of Botany, 120: 95-99.
  • Alves M, CFR Ferreira I, Dias J, Teixeira V, Martins A, Pintado M, 2013. A Review on Antifungal Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. Current Topics in Medicinal Chemistry, 13(21): 2648-2659.
  • Blois MS, 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181(4617): 1199-1200.
  • Brinkman MT, Karagas MR, Zens MS, Schned AR, Reulen RC, Zeegers MP, 2011. Intake of α-linolenic acid and other fatty acids in relation to the risk of bladder cancer: results from the New Hampshire case–control study. British journal of nutrition, 106(7): 1070-1077.
  • Chajès V, Sattler W, Stranzl A, Kostner GM, 1995. Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: Relationship to peroxides and Vitamin-E. Breast Cancer Res Treat, 34:199–212.
  • Chamberland JP, Moon HS, 2015. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells. Familial Cancer, 14(1): 25-30.
  • Dinis TCP, Madeira VMC, Almeida LM, 1994. Action of phenolic derivatives as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys, 315(161):69-77.
  • Dubey SK, Chaturvedi VK, Mishra D, Bajpey A, Tiwari A, Singh M P, 2019. Role of edible mushroom as a potent therapeutics for the diabetes and obesity. 3 Biotech, 9(12): 450.
  • Erdogan MK, Gecibesler IH, Behcet L, 2020a. Chemical constituents, antioxidant, antiproliferative and apoptotic effects of a new endemic Boraginaceae species: Paracaryum bingoelianum. Results in Chemistry, 2: 247-256.
  • Erdogan MK, Agca CA, Gecibesler IH, 2020b. The antiproliferative potential of isolated emodin and aloe-emodin from Rheum ribes on different cancer cell lines. Biological Diversity and Conservation, 13(2): 159-167.
  • Fan MJ, Lin YC, Shih HD, Yang JS, Liu KC, Yang ST, Chung JG, 2011. Crude extracts of Agaricus brasiliensis induce apoptosis in human oral cancer CAL 27 cells through a mitochondria-dependent pathway. In vivo, 25(3), 355-366.
  • Gecibesler IH, Behcet L, Erdogan MK, Askın H, 2017. Antioxidant potencies and chemical compositions of essential oils of two endemic species grow in Turkey: Astragalus oocephalus subsp. stachyophorus and Astragalus sericans. Progress in Nutrition, 19: 60-67.
  • Gecibesler IH, Demirtas I, Behcet L, 2018. Influence of Altitude on Chemical Variability of Volatile Profile for Endemic Diplotaenia bingolensis. Chemistry of Natural Compounds, 54(3): 579-580.
  • Glamočlija J, Stojković D, Nikolić M, Ćirić A, Reis FS, Barros L, Soković M, 2015. A comparative study on edible Agaricus mushrooms as functional foods. Food & function, 6(6): 1900-1910.
  • Glumac M, Pejin B, Karaman M, Mojović M, Matavulj M, 2017. Lignicolous fungi hydrodistilled extracts may represent a promising source of natural phenolics. Natural product research, 31(1): 104-107.
  • Harris IS, DeNicola GM, 2020. The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol. 30:440-451.
  • Karaman M, Tesanovic K, Gorjanovic S, Pastor FT, Simonovic M, Glumac M, Pejin B, 2019. Polarography as a technique of choice for the evaluation of total antioxidant activity: The case study of selected Coprinus Comatus extracts and quinic acid, their antidiabetic ingredient. Natural Product Research, 55:1-6.
  • Kaygusuz O, Kaygusuz M, Dodurga Y, 2017. Assessment of the antimicrobial, antioxidant and cytotoxic activities of the wild edible mushroom Agaricus lanipes (F.H. Møller & Jul. Schäff.) Hlaváček. Cytotechnology 69: 135-144.
  • Kosanić M, Ranković B, Dašić M, 2012. Mushrooms as possible antioxidant and antimicrobial agents. Iranian journal of pharmaceutical research: IJPR, 11(4): 1095.
  • Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Van Griensven L, 2015. Antioxidants of edible mushrooms. Molecules, 20(10): 19489-19525.
  • Lindequist U, 2013. The merit of medicinal mushrooms from a pharmaceutical point of view. International journal of medicinal mushrooms, 15:517–523.
  • Liu K, Wang J, Zhao L, Wang Q, 2013. Anticancer, antioxidant and antibiotic activities of mushroom Ramaria flava. Food and chemical toxicology, 58: 375-380.
  • Liu Q, Zhu M, Geng X, Wang H, Ng TB, 2017. Characterization of polysaccharides with antioxidant and hepatoprotective activities from the edible mushroom Oudemansiella radicata. Molecules, 22(2): 234.
  • Matsushita Y, Furutani Y, Matsuoka R, Furukawa T, 2018. Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC Complement Altern Med., 18(1):319.
  • Olcott HS, Einset E, 1958. An antagonistic effect with antioxidants for unsaturated fats. Journal of the American Oil Chemists’ Society, 35(4): 159-160.
  • Oyaizu M, 1986. Studies on products of browning reaction. The Japanese journal of nutrition and dietetics, 44(6): 307-315.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10): 1231-1237.
  • Su ZY, Tung YC, Hwang LS, Sheen LY, 2011. Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways. Journal of agricultural and food chemistry, 59(9): 5109-5116.
  • Suutari M 1995. Effect of growth temperature on lipid fatty acids of four fungi (Aspergillus niger, Neurospora crassa, Penicillium chrysogenum, andTrichoderma reesei). Archives of microbiology, 164(3): 212-216.
  • Yilmaz N, Solmaz M, Türkekul İ, Elmastaş M, 2006. Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chemistry, 99(1): 168-174.
  • Yin JIE, Becker EM, Andersen ML, Skibsted LH, 2012. Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems. Food chemistry, 135(4): 2195-2202.