Kentsel Ulaşım, Salgınlar ve Covid-19: Ankara Toplu Taşıma Sistemi

Bu çalışmada, yolculuklar ile salgın hastalıklar arasındaki pozitif ilişki, kentsel ulaşım özelinde incelenmektedir. Türkiye’de ilk vakanın görüldüğü 11 Mart 2020 tarihinden itibaren Covid-19 Pandemisi sürecinin bir yıllık dönemi Ankara toplu taşıma sistemine odaklanılarak değerlendirilmektedir. Toplu taşımanın kalabalık ortamları, kısa döngülerle işletilen araçları ve sık ziyaret edilen yapıları, bulaşıcı hastalıkların yayılımını tetikliyor gibi görünse de süreç içinde toplu taşıma ortamlarında Covid-19 hastalığına yakalanma riskinin çok yüksek olmadığı görülmüştür. Aslında, toplu taşımada bulaşı etkileyen faktörler göz önüne alınarak uygulanan idari ve teknik önlemlerle beraber kişisel korunma hastalığın yayılımını kontrol etmemizi sağlamaktadır. Bu çerçevede çalışmamızda hastalıkların yayılmasını etkileyen faktörler kısaca açıklandıktan sonra toplu taşıma sistemlerinde uygulanan bulaşı kontrol edici ve çalışanlar ile yolcuları koruyucu önlemler uluslararası örneklerle tartışılmaktadır. Ankara özelinde ise toplu taşıma sisteminin genel özellikleri ile pandemi öncesi dönemin kullanım yoğunluğu verildikten sonra alınan idari kararlarla uygulanan teknik önlemler aktarılmaktadır. Kentlerdeki hareketliği durdurmanın ve halk sağlığı açısından sıfır risk ortamları yaratmanın mümkün olamayacağının kabulü ile toplu taşıma sistemlerini salgın döneminde olduğu kadar sonrası normalleşme veya iyileşme döneminde de yönetmek zorundayız. Bu süreçlerin iyi yönetilememesi toplu taşımanın özel ulaşım karşısında gerilemesine neden olacaktır ki çevre kirliliği başta olmak üzere ekonomik ve sosyal kayıpları artırarak sürdürülebilirliği tehdit edecektir.

Urban Transport, Pandemics and Covid-19: Ankara Public Transit System

In this study, positive relationships between pandemics and trips are investigated in the context of urban transportation. One-year time interval of Covid-19 Pandemic from March 11, 2020 when the first case was detected in Turkey is evaluated by focusing on Ankara public transportation system. Even crowded areas, vehicles operated in short turnovers and frequently visited structures of public transportation might seem to trigger spread of the pandemic, it is seen that risk of getting the Covid-19 disease is no higher in public transportation. In fact, administrative and technical precautions taken considering factors affecting spread in the public transportation combined with personal protection help control disease spread. In this line, after briefly explaining factors affecting disease spread, we discuss measures for controlling spread and protecting passengers and employees with international examples. In the particular case of Ankara, after giving general characteristics and figures of public transportation system prior to pandemic outbreak, administrative measures affecting public transportation usage and technical precautions are given. Assuming impossibility of halting urban mobility and creating zero-risk areas in terms of public health, as managed during pandemic period, public transport systems needs to be managed during normalization or recovering periods afterwards.

___

  • Ahmad, A., Krumkamp, R. ve Reintjes, R. (2009). Controlling SARS: A review on China’s response compared with other SARS‐affected countries. Tropical Medicine & International Health, 14, 36-45.
  • Al Hajjar, S., Memish, Z.A. ve McIntosh, K. (2013). Middle East Respiratory Syndrome Coronavirus (MERS-CoV): A perpetual challenge. Annals of Saudi Medicine, 33(5), 427-36.
  • Andrews, J.R., Morrow, C. ve Wood, R (2013). Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. American Journal of Epidemiology, 177(6), 556-561.
  • Batty, M. (2020). The Coronavirus crisis: What will the post-pandemic city look like? EPB: Urban Analytics and City Science, 47(4), 547–552.
  • Boyce, J.M. (2016). Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrobial Resistance & Infection Control, 5(10).
  • Browne, A., Ahmad, S., Beck, C.R. ve Nguyen-Van-Tam, J.S. (2016). The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: A systematic review. Journal of Travel Medicine, 23(1), tav002.
  • Casey, A.L., Adams, D., Karpanen, T.J., Lambert, P.A., Cookson, B.D., Nightingale, P., ... Elliott, T.S.J. (2010). Role of copper in reducing hospital environment contamination. Journal of Hospital Infection, 74(1), 72–77.
  • Cossar, J.H. (1994). Influence of travel and disease: An historical perspective. Journal of Travel Medicine, 1(1), 36–39.
  • Davies, J.C. (2007). EPA and nanotechnology: Oversight for the 21st century. Washington, D.C.: Woodrow Wilson International, Center for Scholars.
  • DfT, Department for Transport (2011). London and South East ‘top ten’ overcrowded train services: Spring 2011. Erişim adresi: https://www.gov.uk/government/publications/london-and-south-east-top-ten-overcrowded- train-services
  • Edelson, P.J. ve Phypers, M. (2011). TB transmission on public transportation: A review of published studies and recommendations for contact tracing. Travel Medicine and Infectious Disease, 9(1), 27–31.
  • eHealth Network (2913). World’s first antimicrobial copper train. Erişim adresi: https://ehealth.eletsonline.com /2013/10/worlds-first-antimicrobial-copper-train/
  • Faass, J., Greenberg, M. ve Lowrie, K.W. (2013). Defending a moving target: H1N1 preparedness training for the transit industry. Health Promotion Practice, 14(1), 24-29.
  • Feske, M.L., Teeter, L.D., Musser, J.M. ve Graviss, E.A. (2011). Giving TB wheels: Public transportation as a risk factor for tuberculosis transmission. Tuberculosis (Edinb), 91(1), 16–23.
  • Forsyth, A. (2020). What role do planning and design play in a pandemic? News – Harvard University Graduate School of Design 2020.
  • Goscé, L. ve Anders, J. (2018). Analysing the link between public transport use and airborne transmission: Mobility and contagion in the London underground. Environmental Health, 17(84).
  • Hopkins, D.R. (1983). Princes and peasants: Smallpox in history. Chicago, IL: University of Chicago Press.
  • Horna-Campos, O.J., Consiglio, E., Sánchez-Pérez, H.J., Navarro, A., Caylà, J.A. ve Martín-Mateo, M. (2010). Pulmonary tuberculosis infection among workers in the informal public transport sector in Lima, Peru. Occupational and Environmental Medicine, 68(2), 163-165.
  • Horna-Campos, O.J., Sánchez-Pérez, H.J., Sánchez, I., Bedoya, A., Martín-Mateo, M. (2007). Public transportation and pulmonary tuberculosis, Lima, Peru. Emerging Infectious Diseases, 13(10), 1491–1493.
  • Joseph, C.A., Ricketts, K.D., Yadav, R. ve Patel, S. (2009). Travel-associated Legionnaires’ disease in Europe in 2009. Eurosurveillance, 15(41).
  • Kowalski, W.J. (2012). Hospital airborne infection control. Florida, FL: CRC Press.
  • Lederberg, J., Shope, R.E. ve Oaks, S.C. (Der.). (1992). Emerging infections: Microbial threats to health in the United States. Washington, D.C.: National Academy Press.
  • Mangili, A. ve Gendreau, M.A. (2005). Transmission of infectious diseases during commercial air travel. Lancet, 365(9463), 989-996.
  • McNeill, W.H. (1976). Plagues and people. Garden City, N.Y.: Anchor Press/Doubleday.
  • Mohr, O., Askar, M., Schink, S., Eckmanns, T., Krause, G. ve Poggensee, G. (2012). Evidence for airborne infectious disease transmission in public ground transport—A literature review. Eurosurveillance, 17(35).
  • Mokhtarian, P.L. ve Salomon, I. (1999). Traveling for the fun of it. ACCESS Magazine, 1(15).
  • Nasir, Z.A., Campos, L.C., Christie, N. ve Colbeck, I. (2016). Airborne biological hazards and urban transport infrastructure: Current challenges and future directions. Environmental Science and Pollution Research, 23(15), 15757–15766.
  • National Academies of Sciences, Engineering and Medicine (2013). ACRP Report 91: Infectious disease mitigation in airports and on aircraft. Washington D.C.: The National Academies Press.
  • Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A. (2015). Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Animal to human interaction. Pathogens and Global Health. 109(8), 354-362.
  • Pan, X., Ojcius, D.M., Gao, T., Li, Z., Pan, C. ve Pand, P. (2020). Lessons learned from the 2019-nCoV epidemic on prevention of future infectious diseases. Microbes Infect, 22(2), 86–91.
  • Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F. ve Barabási, A. (2015). Returners and explorers dichotomy in human mobility. Nature Communications, 6(8166).
  • Shapiro, R., Hassett, K. ve Arnold, F. (2002). Conserving energy and preserving the environment: The role of public transportation (Report for the American Public Transportation Association). Erişim adresi: http://www.sonecon.com/docs/studies/enenv_0702.pdf
  • Shoghri, A., Liebig, J., Gardner, L., Jurdak, R. ve Kanhere, S. (2019). How mobility patterns drive disease spread: A case study using public transit passenger card travel data. Proceedings – 20th IEEE International Symposium, WoWMoM 2019.
  • Shoghri, A., Liebig, J., Jurdak, R., Gardner, L. ve Kanhere, S. (2020). Identifying highly influential travellers for spreading disease on a public transport system. Proceedings - 21st IEEE International Symposium, WoWMoM 2020.
  • Siegel, J.D., Rhinehart, E., Jackson, M., Chiarello, L. ve the Healthcare Infection Control Practices Advisory Committee (2007). Guideline for isolation precautions: Preventing transmission of infectious agents in healthcare settings. Erişim adresi: https://www.cdc.gov/niosh/docket/archive/pdfs/NIOSH-219/0219-010107- siegel.pdf
  • Sustainable Bus (2020). Bus disinfection through UV lights. A way to fight Coronavirus in Shanghai. Erişim adresi: https://www.sustainable-bus.com/news/bus-disinfection-through-uv-lights-a-way-to-fight- coronavirus-in-shanghai/
  • Şenbil, M. ve Yetişkul, E. (2020). Türkiye’de son dönem otomobilleşme: 2007-2018 arası iller bazında analizler. İdealkent Kent Araştırmaları Dergisi, 29(11), 372-404.
  • Troko, J., Myles, P., Gibson, J., Hashim, A., Enstone, J., Kingdon, S., ... Van-Tam, J.N. (2011). Is public transport a risk factor for acute respiratory infection? BMC Infectious Diseases, 11(16).
  • Tsang, K.W, Ho, P.L., Ooi G.C, Yee, W.K., Wang, T., Chan-Yeung, M., ...Lai, KN. (2003). A cluster of cases of severe acute respiratory syndrome in Hong Kong. The New England Journal of Medicine, 348(20), 1977-1985.
  • UITP (2020). Public transport is Covid Safe. Policy Brief. Erişim adresi: https://cms.uitp.org/wp/wp-content /uploads/2020/10/Policy-Brief-PTisCOVID-Safe.pdf
  • Ward, K.A., Armstrong, P., McAnulty, J.M., Iwasenko, J.M. ve Dwyer, D.E. (2010). Outbreaks of pandemic (H1N1) 2009 and seasonal influenza A (H3N2) on cruise ship. Emerging Infectious Diseases, 16(11), 1731–1737.
  • WEF (2021). Here's how to build better public transport after Covid-19. Erişim adresi: https://www.weforum.org /agenda/2021/04/how-improve-public-transport-after-covid-19/
  • WHO (2003). Cumulative number of reported probable cases of SARS. Erişim adresi: https://www.who.int /csr/sars/country/2003_06_30/en/
  • WHO (2019). MERS situation update, November 2019. Erişim adresi: http://www.emro.who.int/pandemic- epidemic-diseases/mers-cov/mers-situation-update-november-2019.html
  • WHO (2021). Timeline: WHO's COVID-19 Response. Erişim adresi: https://www.who.int/emergencies/diseases /novel-coronavirus-2019/interactive-timeline#!
  • Wilson, M.E. (1995). Travel and the emergence of infectious diseases. Emerging Infectious Diseases, 1(2), 39-46.
  • Wilson, M.E., Levins, R. ve Spielman A. (1994). Disease in evolution: Global changes and emergence of infectious diseases. New York, NYC: New York Academy of Sciences.
  • Worldometer (2021). Covid-19 Coronavirus Pandemic. Erişim adresi (25 Eylül 2021): https://www.worldometers.info/coronavirus/
  • Yetişkul, E. (2017). Karmaşık Kentler ve Planlamada Karmaşıklık. Planlama, 27(1), 7-15.
  • Zhao, B., Ni, S., Yong, N., Ma, X., Shen, S. ve Ji, X. (2015). A preliminary study on spatial spread risk of epidemics by analyzing the urban subway mobility data. Journal of Biosciences and Medicines, 3(9), 15–21.