Synthesis and Characterization of Epoxy/Boron Nitride Composite for Aerospace Applications

Beside extensive successful use of epoxy resins in many applications such as electronic packaging, insulation, adhesives and laminate technologies with various advantages; their low thermal conductivity and high CTE (thermal expansion coefficient) limit their performance. However, the addition of the particles into this material can significantly improve the constitutive and thermal properties. In this context, this study aims to develop an adhesive material where the epoxy resin is considered as the matrix material which is filled with Hexagonal Boron Nitride (h-BN) particles. Moreover, we characterize thermal behavior of the developed composite structure. A facile synthesis method was developed for minimizing the void formation while achieving a homogenous distribution of h-BN particles. SEM analysis has been employed to study the effect of the h-BN particles on the microstructural morphology. In addition, DMA (Dynamic Mechanical Analysis) and DSC (Differential Scanning Calorimeter) techniques were employed to examine the glass transition and viscoelastic mechanical behavior. The obtained results are consistent with the existing ones in the literature.

Havacılık Uygulamaları için Epoksi/Bor Nitrür Kompozitinin Sentezi ve Karakterizasyonu

Elektronik ambalaj, yalıtım, yapıştırıcı ve laminat teknolojileri gibi birçok uygulamada çeşitli avantajlara sahip epoksi reçinelerin kapsamlı başarılı kullanımı yanında; düşük ısı iletkenliği ve yüksek CTE (termal genleşme katsayısı) performanslarını sınırlar. Buna rağmen, çeşitli parçacıkların bu malzemeye eklenmesi, mekanik ve termal özellikleri önemli ölçüde artırabilir. Bu bağlamda, bu çalışma, epoksi reçinesinin, Altıgen Bor Nitrür (h-BN) partikülleri ile doldurulmuş matris malzemesi olarak kabul edildiği bir yapıştırıcı malzeme geliştirmeyi amaçlamaktadır. Ayrıca, gelişmiş kompozit yapının termal davranışı karakterize edilmiştir. H-BN parçacıklarının homojen bir dağılımını sağlarken, boşluk oluşumunu en aza indirmek için bir sentez yöntemi geliştirilmiştir. SEM analizi, h-BN partiküllerinin mikroyapısal morfoloji üzerindeki etkisini incelemek için kullanılmıştır. Ayrıca cam geçiş ve viskoelastik mekanik davranışları incelemek için DMA (Dinamik Mekanik Analiz) ve DSC (Diferansiyel Tarama Kalorimetresi) teknikleri kullanılmıştır. Elde edilen sonuçların literatür ile uygun olduğu gözlemlenmiştir.

___

1] Κ.C. Yung, H. Liem, “Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-model particle size mixing,” Journal of Applied Polymer Science, Vol. 106, pp. 3587-3591, 2007.

[2] H.B. Fan, M.M.F. Yuen, “Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation,” Polymer, Vol. 48 pp. 2174-2178, 2007.

[3] F. Sawa, S. Nishijima, S. Okada, “Molecular design of an epoxy for cryogenic temperatures,” Cryogenics Vol. 35, pp. 767-769, 1995.

[4] F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study,” Composites Science and Technology, Vol. 65, pp. 2300-2313, 2005.

[5] Y.X. Fu, Z.X. He, D.C. Mo, S.S. Lu, “Thermal conductivity enhancement with different fillers for epoxy resin adhesives,” Applied Thermal Engineering, Vol. 66, pp. 493-498, 2014.

[6] C. Lin, D.D.L. Chung, “Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials,” Carbon, Vol. 47, pp. 295-305, 2009.

[7] I.J. Beyerlein, S.L. Phoenix, “Statistics for the strength and size effects of microcomposites with four carbon fibers in epoxy resin,” Composite Science and Technology, Vol. 56, pp. 75-92, 1996.

[8] C.P. Wong, R.S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” Journal of Applied Polymer Science, Vol. 74, pp. 3396-3403, 1999.

[9] M. Hussain, A. Nakahira, K. Nakahira, “Mechanical property improvement of carbon fiber reinforced epoxy composites by Al203 filler dispersion,” Materials Letters, Vol. 26, pp. 185-191, 1996.

[10] X. Huang, T. Iizuka, P. Jiang. Y. Okhi, T. Tanaka, “Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites,” Journal of Physical Chemistry C, Vol. 116, pp. 13629-13639, 2012.

[11] Q. H. Mu, S.Y. Feng, G.Z. Diao, “Thermal conductivity of silicon rubber filled with ZnO,” Polymer Composities, Vol. 28, pp. 125-130, 2007.

[12] Y. S. Eom, K. S. Choi, S.H. Moon, J.H. Park, J.H. Lee, J.T. Moon, “Characterization of a hybrid Cu paste as an isotropic conductive adhesive” ETRI Journal, Vol. 33, pp. 864-870, 2011.

[13] J.L. Zeng, Z. Cao, D.W. Yang, L.X. Sun, L. Zhang, “Thermal conductivity enhancement of Ag nanowires on an organic phase change material” Journal of Thermal Analysis, Vol. 101, pp. 385-389, 2010.

[14] G.C. Psarras, E. Manolakki, G.M. Tsangaris, “Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles” Composites Part A: Applied Science and Manufacturing, Vol. 33, pp. 375-384, 2002.

[15] W. Zhou, “Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites” Journal of Materials Science, Vol. 46, pp. 3883-3889, 2011.

[16] Z. Han, J.W. Wood, H. Herman, C. Zhang, G.C. Stevens, “Thermal properties of composites filled with different fillers” Confernce record of the 2008 IEEE International Symposium on Electrical Insulation.

[17] C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, D. Goldberg, “Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers” Advanced Functional Materials, Vol. 19, pp. 1857-1862, 2009.

[18] J. Hou, G. Li, N. Yang, L. Qin, M.E. Grami, Q. Zhang, N. Wanga, X. Qu, “Preperation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity” RSC Advances, Vol. 4, pp. 44282-44290, 2014.

[19] Z. Yu, X. Wang, H. Bian, L. Jiao, W. Wu, H. Dai, “Enhancement of the heat conduction performance of boron nitride/cellulosic fibre insulating composites.” PLoSONE, Vol. 13, e0200842, 2018.