EKSENEL TÜRBİN KANATLARI ARASINDA OLUŞAN İKİNCİL AKIŞ KAYIPLARININ BARİYER UYGULANARAK AZALTILMASI

Bu çalışmada, eksenel türbin kanatlarının arasında oluşan ikincil akışların yapısı ve bu akışların neden olduğu aerodinamik kayıpların azaltılmasına yönelik bariyer uygulaması yöntemi sayısal olarak incelenmiştir. Bu amaçla, öncelikle mevcut literatür gözden geçirilmiş ve önerilen ikincil akış modelleri sunulmuştur. Çalışmada, akışkanın hareket ettiği dönen kanat kanalı modellenmiş, kanat ucu sızıntı akışı ve göbek üzerinde oluşan at nalı çevrisinin aerodinamik yapısı elde edilmiştir. İkincil akışların oluşturduğu toplam basınç kayıp katsayıları ANSYS Fluent yazılımı ile hesaplanmıştır. Aynı çalışma koşullarında olmak üzere toplam basınç kayıplarnı azaltmaya yönelik üç farklı yükseklikteki bariyer geometrisi incelenmiştir. Bariyer uygulaması ile kanat çıkış kesitlerinde toplam basınç kayıp katsayılarında azalma olduğu belirlenmiştir.

SECONDARY FLOW LOSS REDUCTION IN AXIAL TURBINE BLADES BY ENDWALL FENCE APPLICATION

In this study, it is investigated the effects of secondary flows and corresponding aerodynamic loss in axial turbine rotor numerically. To this sense, it is overviewed available literature and presented secondary flow models given by different authors. The rotor blades in which fluid flows is modeled and aerodynamic structure of tip leakage flow and horseshoe vortex are obtained. Loss mechanisms related to secondary flow and methods to reduce these losses are outlined. For same working conditions, total pressure loss is computed for three different fence height via ANSYS Fluent software. It is obtained that there is reduction of total pressure loss coefficient at blade outlet cross-section.

___

  • [1] Milcák Petr, "Posibilities for Reduction of Secondary Flows and Losses in Steam Turbines", downloaded from Individual Presentation on website, http://www.imiue.polsl.pl/dane/konf_cfg/materialy/pa per3-1__1-9-2008_16-17-7.pdf
  • [2] Ingram G.L., "Endwall Profiling for the Reduction of Secondary Flow in Turbines", PhD Thesis, School of Engineering, University of Durham England, July 2003.
  • [3] Tamamidis P., Zhang G., Assanis D.N., "Comparison of Pressure-Based and Artificial Compressibility Methods for Solving 3D Steady Incompressible Viscous Flows", Journal of Computational Physics 124, pp. 1-13, Article No: 0041, 1996.
  • [4] Ozaki K., Maekawa H., Watanabe D., "Developing Compressible Viscous Flow Structures in a Curved Duct of Square Cross-Section".
  • [5] Simon T.W., Piggush J.D., "Turbine Endwall Aerodynamics and Heat Transfer", 2006, Journal of Propulsion and Power, Vol.22, No.2.
  • [6] Langston L.S., "Secondary Flow in Axial Turbines-A Review",Turbine 2000 Workshop, Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems, Çeşme, Turkey, Annals of the New York Academy of Sciences, Vol 934, pp. 11-26.
  • [7] Eymann S., Reinmöller U., Niehuis R., Förster W., Gier J., "Improving 3D Flow Characteristics in a Multistage LP Turbine By Means of Endwall Contouring and Airfoil Design Modification-Part 1:Design and Experimental Investigation", Proceedings of IGTI 02 ASME Turbo Expo 2002, June 03-06, 2002, Amsterdam, The Netherlands.
  • [8] Acharya S., Mahmood G., "Turbine Blade Aerodynamics", The Gas Turbine Handbook, 2006, Chapter 4.3.
  • [9] Wei N., "Significance of Loss Models in Aerothermodynamic Simulation for Axial Turbines" Doctoral Thesis, 2000, Royal Institute of Technology, Stockholm.
  • [10] Kawai T., Shinoki S., "Visualization Study of Three-Dimensional Flows in a Turbine Cascade Endwall Region", JSME International Journal, Series II, Vol.33, No. 2, pp.256-264, 1990.
  • [11] Govardhan M., Rajender A., Umang J.P., "Effect of Streamwise Fences on Secondary Flows and Losses in a Two Dimensional Turbine Rotor Cascade", 2006, Journal of Thermal Science, Vol.15, No.4, pp. 296-305.
  • [12] Lee Y.J., Chung J.T., "Effects of the Boundary Layer Fence on the Secondary Flow Near the Endwall in Gas Turbines", October 6-8, 1997, The Fifth Asian International Conference on Fluid Machinery, SeoulKorea, pp. 157-163.
  • [13] Moon Y.J., Koh S.R., "Counter-rotating Streamwise Vortex Formation in the Turbine Cascade with Endwall Fence", 2001, Computers and Fluids, Pergamon, pp. 473-490.
  • [14] Kawai T., Adachi T., Shinoki S., "Secondary Flow and Losses in a Turbine Cascade Equipped with Endwall Boundary Layer Fences (Influence of Fence Position)", The Japan Society of Mechanical Engineers, No 87-1282A.
  • [15] Kim J., Moon Y., Chung J., "Secondary Flow Control in the Turbine Cascade with the ThreeDimensional Modification of Blade Leading Edge", November, 2002, Transaction of the Korean Society of Mechanical Engineering-B, Vol. 26, issue 11, pp. 1552-1558.
  • [16] Goriatchev V., Ivanov N., Smirnov E., Ris V., "CFD Analysis of Secondary Flows and Pressure Losses in A Transonic Turbine Cascade", Conference on Modeling Fluid Flow (CMFF'03) The 12th International Conference on Fluid Flow Technologies, Budapest, Hungary, September 3-6, 2003.
  • [17] Doerffer P., Rachwalski J., Magagnato F., "Numerical Investigation of the Secondary Flow Development in Turbine Cascade", Task Quarterly 5 No 2 (2001), 165-178.
  • [18] T. J. Praisner, E. Allen-Bradley, E. A. Grover, D. C. Knezevici and S. A. Sjolander, "Application of Nonaxisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils", ASME Journal of Turbomachinery, Vol.135, Issue 6.
  • [19] Denton J.D., "Loss Mechanisms in Turbomachines", Journal of Turbomachinery, Vol.115, pp 621-656.
  • [20] El-Batsh H.M., Hanna M.B., Mohamed M.W., Sherif M.F., "Effect of the Tip Clearance Gap on the Flow and Loss Mechanism through a Linear Turbine Cascade", Proceedings of ICFD 10:Tenth International Congress of Fluid Dynamics December 16-19, 2010, Egypt, ICFD10-EG-3055.
  • [21] El-Askary W. A., Balabel A., El-Behery S.M., Hegab A., "Prediction of Turbulence Transpiration Resulting from Asymmetric and Symmetric Mass Injection in a Porous Channel", Proceedings of ICFD 10: Tenth International Congress of Fluid Dynamics December 16-19, 2010, Egypt, ICFD10-EG-3070.