Sayısal Renk Parametreleri İle Bazı Fiziksel ve Kimyasal Toprak Özelliklerinin Tahmini

Tarım topraklarının fonksiyonlarının sürdürülebilirliği doğru tanımlanmaları, uygun idare edilmeleri ve toprak kalitesinde zaman içerisinde meydana gelen değişimin izlenmesi ile mümkün olabilir. Toprak özelliklerinin klasik yöntemlerle belirlenmeleri oldukça uzun zaman, maliyet ve iş gücü gerektirdiğinden, üreticiler çoğu zaman toprak analizi yaptırmaktan kaçınmaktadır. Bu çalışma, bir kolorimetre ile kolaylıkla belirlenebilen sayısal renk parametrelerinin geniş bir tarımsal araziden alınan toprakların bazı fiziksel ve kimyasal özellikleri ile olan ilişkilerini belirlemek ve sayısal renk parametrelerinin toprak özelliklerinin tahmininde kullanılabilirliğini araştırmak için yürütülmüştür. Bu amaçla, yoğun tarımsal üretimin yapıldığı Tokat, Kazova’da 63 noktadan 0-30 cm derinliklerinden alınan örneklerin renk parametreleri (L, a ve b), kil, kum ve silt içeriği, toprak reaksiyonu (pH), elektriksel iletkenlik (EC), kireç içeriği, organik madde (OM), tarla kapasitesi (TK), solma noktası (SN), agregat stabilitesi (AS), değişebilir katyonlar (Na, K ve Ca), katyon değişim kapasitesi (KDK) ve demir (Fe) konsantrasyonu belirlenmiştir. Toprağın parlaklık (L) ve kırmızılık (a) değerleri ile kil, kireç, AS, SN, TK, KDK, Ca, Na, ve K arasında önemli düzeyde negatif (P<0.01) bir korelasyon tespit edilmiştir. Regresyon analizi “L” parametresinin AS, kireç içeriği, KDK, EC ve değişebilir Na’un tahmininde başarılı bir şekilde kullanılabileceğini göstermiştir.  Benzer şekilde “a” parametresinin çalışılan alandaki toprakların AS (R2=0.65), kireç içeriği (R2=0.64), değişebilir Ca (R2=0.58) ve değişebilir K’un (R2=0.51)   tahmininde tatmin edici bir şekilde kullanılabileceği görülmüştür. Elde edilen sonuçlar, sayısal renk parametrelerinin Kazova topraklarının bir kısım önemli toprak özelliklerinin tahminlerinde güvenilir bir şekilde kullanılabileceklerini ortaya koymuştur. Daha kısa zamanda, az masrafla ve daha fazla sayıda toprak örneğinin karakterize edilebilmesi tarım topraklarının üretkenliklerinin sürdürülebilmesinde daha doğru kararların alınmasını mümkün kılacaktır.  

___

  • Allison, L.E., Moodie, C.D., 1965. Carbonate. In: C.A. Black et al. (Ed.) Methods of soil analysis, Part 2. Agronomy 9:. American Society of Agronomy Inc. Madison, Wisc. USA. p.1379-1400
  • Aitkenhead, M.J., Coull, M., Towers, W., Hudson, G., Black, H.I.J., 2013. Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland. Geoderma, 200:99-107.
  • Araujo, M.A., Zinn, Y.L., Lal, R., 2017. Soil parent material, texture and oxide contents have little effect on soil organic carbon retention in tropical highlands. Geoderma, 300:1-10.
  • Barret, L.R., 2002. Spectrophotometric color measurement in situ in well drained sandy soils. Geoderma 108:49-77.
  • Baumann, K., Schöning, I., Schrumpf, M., Ellerbrock, R. H., Leinweber, P., 2016. Rapid assessment of soil organic matter: Soil color analysis and Fourier transform infrared spectroscopy. Geoderma, 278:49-57.
  • Budak, M., 2008. Bazı toprak özelliklerinin belirlenmesinde görülebilir ve yakın kızılötesi spektroskopisinin kullanım olanaklarının araştırılması. Yüksek Lisans Tezi, Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü. Tokat.
  • Budak, M., Gunal, H., 2016. Visible and near infrared spectroscopy techniques for determination of some physical and chemical properties in Kazova watershed. Advances in Environmental Biology, 10(5):61-73.
  • Camberdella C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., 1994. Field scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58:1501-1511.
  • Chapman, H.D., 1965. Cation-exchange capacity. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilanb), 891-901.
  • Commission Internationale de l’echlairage (CIE)., 1978. Recommendations on Uniform Color Spaces, Color Differences, and Psychometric Color Terms. Calorimetry CIE, Paris Suppl. no. 2 to Publication no. 15.
  • Fan, Z., Herrick, J.E., Saltzman, R., Matteis, C., Yudina, A., Nocella, N., Crawford, E., Parker, R., Van Zee, J., 2017. Measurement of Soil Color: A Comparison Between Smartphone Camera and the Munsell Color Charts. Soil Science Society of America Journal, 81(5), 1139-1146.
  • Fang, X.M., Ono, Y., Fukusawa, H., Pan, B.T., Li, J.J., Guan, D.H., Oi, K., Tsukamoto, S., Torii, M., Mishima, T., 1999. Asian summer monsoon instability during the past 60,000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth and Planetary Science Letters 168:219–232.
  • Gee, G.W. Bouder, J.W., 1986. Particle Size Analysis. In: A. Clute (Ed.) Methods of Soil Analysis. Part I Agronomy No: 9 Am Soc. of Agron. Madison, Wisc., USA.
  • Günal, H., 2006. Ardışık İki Topografya’da Yer Alan Toprakların Oluşumları ve Sınıflamaları. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, (2).
  • Günal H., Erşahin, S., 2006. Toprak Özelliklerinin Tahmininde Sayısallaştırılmış Renk Parametrelerinin Kullanımı. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi 12:(1):85-92.
  • Günal H., Erşahin, S., Yetgin, B., Kutlu, B., 2008. Use of chroma-meter measured color parameters in estimating color related soil variables. Communications in Soil Science and Plant Analysis. 39.5-6:726-740.
  • Jackson, M.L., 1962. Soil Chemical Analysis. Prentice Hall Inc. Eng. Cliffs. N. I., USA.
  • Ji, J.F., Chen, J., Balsam, W., Liu, L.W., 2007. Quantitative analysis of hematite and goethite in the Chinese loess–paleosol sequences and its implication for dry and humid variability. Quaternary Sciences 27:221–229.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, 2nd ed (Ed. A Klute), American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin, pp. 425-442.
  • Kirillova, N.P., Vodyanitskii, Y.N., Sileva, T.M., 2015. Conversion of soil color parameters from the Munsell system to the CIE-L* a* b* system. Eurasian soil science, 48(5):468-475.
  • Klute, A., 1986. Water Retention: Laboratory Methods. Methods of Soil Analysis. Part1. 2nd Ed. V Agronomy 9. Am. Soc. Agron., 635-660, Madison.
  • Lindsay, W.L. and Norvell, W.A., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Amer. J. 42:421-428
  • MGM., 2017. Meteoroloji Genel Müdürlüğü. Tokat iklim verileri. (Erişim. 20.12.2017) https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=TOKAT
  • Moritsuka, N., Matsuoka, K., Katsura, K., Sano, S., Yanai, J., 2014. Soil color analysis for statistically estimating total carbon, total nitrogen and active iron contents in Japanese agricultural soils. Soil science and plant nutrition, 60(4):475-485.
  • Mouazen, A.M., Karoui, R., De Baerdemaeker, J., Ramon, H., 2005. Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. Jour. of near infrared spectroscopy, 13(4):231-240.
  • Munsell, A.H., 1905. A Color Notation a Measured Color System, Based on the Three Qualities Hue, Value and Chroma. Kessinger Publishing, Montana USA.
  • Munsell Color., 1994. Munsell Soil Color Charts, 1994 Revised Edition. Macbeth Division of Kollmorgen Instruments, New Windsor, NY.
  • Nelson, D.W., Sommer, L.E., 1982. Total carbon, organic carbon, and organic matter. In A.L. Page (ed.) Methods of Soil Analysis. 2nd Ed. ASA Monogr. 9(2). Amer. Soc. Agron. Madison, p. 539-579.
  • Post, D.F., Levine, S.J., Bryant, R.B., Mays, M.D., Batchily, A.K., Escadafal, R., Huete, A.R., 1993. Correlations between field and laboratory measurements of soil color. In: Bigham, J.M., Ciolkosz, E.J. (Eds.), Soil Color. Soil Science Society of America, Madison, WI, pp. 35-50.
  • Pretorius, M.L., Van Huyssteen, C.W., Brown, L.R., 2017. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa. Environmental monitoring and assessment, 189(11):556.
  • Rhoades, J.D., 1982. Soluble salts. in: A.L. Page et al.(ed.) Methods of soil analysis: Part2. Agronomy Monogr. 9. 2nd ed. p. 167-178, ASA and SSSA, Madison, WI.
  • Sanchez-Maran˜on, M.M., Soriano, M., Melgosa, G., Delgado, R., 2004. Quantifying the effects of aggregation, particle size and components on the colour of Mediterranean soils. European Journal of Soil Science. 51:551-565.
  • Sanmartín, P., Silva-Sánchez, N., Martínez-Cortizas, A., Prieto, B., 2015. Usual and unusual CIELAB color parameters for the study of peat organic matter properties: Tremoal do Pedrido bog (NW Spain). In Journal of Physics: Conference Series (Vol. 605(1):012014). IOP Publishing.
  • Schulze, D.G., Nagel, J.L., Van Scoyoc, G.E., Henderson, T.L., Baumgardner, M.F., Stott, D.E., 1993. Significance of organic matter in determining soil colors. Soil color, pp. 71–90.
  • Schwertmann, U., 1993. Relations between iron oxides, soil color, and soil formation. In: Bigham, J.M., Ciolkosz, E.J. (Eds.), Soil Color. Soil Sci. Soc. of Am., Madison WI, pp. 51- 70.
  • Shen, Z.X., Cao, J.J., Zhang, X.Y., Arimoto, R., Ji, J.F., Balsam, W.L., Wang, Y.Q., Zhang, R.J., Li, X.X., 2006. Spectroscopic analysis of iron-oxide minerals in aerosol particles from northern China. Science of the Total Environment 367:899–907.
  • Soil Survey Staff., 1999. Soil Taxonomy- A Basic system of soil classification for making and interpreting soil surveys. United States Dept. of Agriculture (USDA) United States Printing Office, Washington DC, USA.
  • Stiglitz, R.Y., E.A. Mikhailova, C.J. Post, M.A. Schlautman, and J.L. Sharp., 2016. Teaching soil color determination using an inexpensive color sensor. Natural Sciences Education 45.
  • Thompson, J.A., A.R. Pollio, and P.J. Turk., 2013. Comparison of Munsell soil colo charts and the GLOBE soil color book. Soil Sci. Soc. Am. J. 77:2089–2093.
  • Torrent, J., Schwertmann, U., Schulze, D.G., 1980. Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 23:191–208.
  • Torrent, J., Barrón, V., 1993. Laboratory measurement of soil color: theory and practice. Soil color, (soilcolor), 21-33.
  • Usowicz B, Lipiec J., 2017 Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil and Tillage Research, 174:241-250.
  • Viscarra Rossel, R.A., B. Minasny, P. Roudier, and A.B. McBratney., 2006. Colour space models for soil science. Geoderma 133:320–337.
  • Vodyanitskii, Y. N., & Kirillova, N. P., 2016. Application of the CIE-L* a* b* system to characterize soil color. Eurasian Soil Science, 49(11), 1259-1268.
  • Vodyanitskii, Y.N., Savichev, A.T., 2017. The influence of organic matter on soil color using the regression equations of optical parameters in the system CIE-L* a* b. Annals of Agrarian Science, 15(3):380-385.
  • Zanetti, S.S., Cecílio, R.A., Alves, E.G., Silva, V.H., Sousa, E.F., 2015. Estimation of the moisture content of tropical soils using colour images and artificial neural networks. Catena, 135:100-106.
Harran Tarım ve Gıda Bilimleri Dergisi-Cover
  • Başlangıç: 1997
  • Yayıncı: Harran Üniversitesi Ziraat Fakültesi
Sayıdaki Diğer Makaleler

Farklı Rasyon Senaryolarının İvesi Koyunlarında Dışkı Kaynaklı Sera Gazları Emisyonuna Etkileri

Sabri YURTSEVEN, Mehmet AVCI, Mehmet ÇETİN, İrfan ÖZTÜRK, Mustafa BOĞA

Ağrı İlinde Hububat Alanlarında Zararlı Süne, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) ve Yumurta Parazitoiti Trissolcus grandis (Thomson 1861) (Hymenoptera: Scelionidae)’in Yayılış Alanları

İsmail Alaserhat, Adnan CANBAY

Konserve İşleminin Marathon ve Sultan Çeşidi Brokolilerin Özelliklerine Etkileri

Ahmet Sabri Ünsal, Gülseren Hayoğlu

Soğan İriliklerinin Nergis (Narcissus tazetta subsp. tazetta L.)’te Verim ve Bazı Bitkisel Özelliklere Etkisi

Abdülhabip ÖZEL, Kaan ERDEN

Yerleşim Sıklığının Pekin Ördeklerinin Gelişme Performansına Etkileri

Sabri Arda Eratalar

Pleurotus Türlerinde Hasat Sonrası Uygulamaların Kaliteye Etkisi

Selen AKAN, Ruhsar YANMAZ

Ses Dalgaları ile Mikroorganizmaların Kontrolü

Murat Dikilitaş, Vehbi Balak, Eray Şimşek, Sema Karakaş

Derim sonrası UV-C ve etanol uygulamalarının Red Globe üzüm çeşidinin kalitesi ve muhafaza süresi üzerine etkileri

Demir KÖK, Erdinç BAL, Ali İzzet TORÇUK

Derim Sonrası UV-C ve Etanol Uygulamalarının Red Globe Üzüm Çeşidinin Kalitesi ile Muhafaza Süresi Üzerine Etkileri

Erdinç BAL, Ali İzzet TORÇUK, Demir KÖK

Bazı Kiraz Anaçlarının Genetik Akrabalık İlişkilerinin RAPD Moleküler Markır Yöntemi İle Belirlenmesi

Hasan PINAR, Mehmet YAMAN, Hasan Cumhur SARISU, Aydın UZUN, Merve Arefe YİĞİT