Salep tozunun bifidojenik etkisi

Bu araştırmanın amacı, salep tozunun B. lactis, B. infantis, B. longum ve B. bifidum’u içeren bazı Bifidobacterium türleri üzerine bifidojenik etkisini araştırmaktır. Bifidobacterium türlerinin gelişmesi, 48 saatlik fermantasyon süresince pH ve optik yoğunluk (OD) ölçülerek incelenmiştir. Bifidobacterium türleri tarafından salep tozunun fermantasyonunun etkinliğini değerlendirmek amacıyla gelişme ortamındaki laktik, asetik, bütirik ve propiyonik asit değerleri HPLC cihazı kullanılarak saptanmıştır. Bifidobacterium türlerinin karbon kaynağı olarak salep tozunu kullanabildiği ve glikoz içeren ortamda B. lactis ve salep tozu içeren ortamda B. infantis için en yüksek OD değerleri gözlenmiştir. Test edilen tüm suşların, propiyonik ve bütirik asit miktarlarından daha yüksek oranda laktik ve asetik asit üretebildiği belirlenmiştir. Sonuç olarak, dört Bifidobacterium türünün salep tozunu fermente edebildiği gözlenmiştir. Ayrıca, salep tozu Bifidobacterium türlerinin gelişmesini ve aktivitesini artırdığı için bifidojenik etkili olarak kabul edilebilir.

Bifidogenic effect of salep powder

The aim of this research was to study the bifidogenic effect of salep powder on some Bifidobacterium species, namely B. lactis, B. infantis, B. longum and B. bifidum. The growth of the Bifidobacterium species was investigated by measuring the pH and optical density (OD) during 48 h-fermentation. In order to evaluate the efficiency of the fermentation of salep powder by the Bifidobacterium subsp. lactic, acetic, butyric and propionic acid values in the growth media were quantified by HPLC. It was determined that Bifidobacterium species might be used salep powder as a source of carbon and the highest OD values were found for B. lactis in media containing glucose and for B. infantis in media containing salep powder. All the tested strains observed the ability to produce higher amounts of lactic and acetic acids than amounts of propionic and butyric acids. Consequently, it was determined that all four Bifidobacterium species were able to ferment salep powder. Moreover, because salep powder enhanced the growth and activity of Bifidobacteria and it might be conferred as a bifidogenic effect.

___

  • Referans 1 Altundag, E., Sevgi, E., Kara, Ö., Sevgi, O., Tecimen, B.H., Bolat, I. 2012. Comparative Morphological, Anatomical and Habitat Studies on Dactylorhıza romana (seb.) Soó subsp. Romana and Dactylorhiza romana (seb.) Soó subsp. Georgica (klinge) soó ex renz & taub. (Orchidaceae) in Turkey. Pakistan Journal of Botany, 44:143–152.
  • Referans 2 Anonymous, 2012. Transgenomics Application Book, Chapter IV: HPLC Colums. USA, pp. 284–293.
  • Referans 3 Barczyńska, B., Śliżewska, K., Libudzisz, Z., Kapuśniak, K., Kapuśniak, J. 2015. Prebiotic Properties of Potato Starch Dextrins. Postepy Hig Med Dosw (online), 69: 1031–1041.
  • Referans 4 Barczynska, R., Slizewska, K., Jochyma, K., Kapusniaka, J., Libudzisz, Z. 2012. The Tartaric Acid-Modified Enzyme-Resistant Dextrin from Potato Starch As Potential Prebiotic. Journal of Functional Foods, 954–962.
  • Referans 5 Bernardeau, M., Vernoux, J.P., Henri-Dubernet, S., Guéguen, M. 2008. Safety Assessment of Dairy Microorganisms: the Lactobacillus genus. International Journal of Food Microbiology, 126: 278–285.
  • Referans 6 Bindels, L.B., Delzenne, N.M., Cani, P.D., Walter, J. 2015. Towards a More Comprehensive Concept for Prebiotics. Gastroenterology & Hepatology, 12:303–310.
  • Referans 7 Carlson, J.L., Erickson, J.M., Lloyd, B.B., Slavin, J.L. 2018. Health Effects and Sources of Prebiotic Dietary Fiber. Current Developments In Nutrtion, 2(3):1–8.
  • Referans 8 Champagne, C.P., Gardner, N.J., Roy, D. 2005. Challenges in the Addition of Probiotic Cultures to Foods. Critical Reviews in Food Science and Nutrition, 45(1):61–84.
  • Referans 9 Connolly, M.L., Lovegrove, J.A., Tuohy, K.M. 2010. Konjac Glucomannan Hydrolysate Beneficially Modulates Bacterial Composition and Activity within the Faecal Microbiota. Journal of Functional Foods, 2:219 –224.
  • Referans 10 Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., Topping, D.L., Suzuki, T., Taylor, T.D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M., Ohno, H. 2011. Bifidobacteria can Protect from Enteropathogenic Infection Through Production of Acetate. Nature, 469:543–547.
  • Referans 11 Fung, K.Y., Cosgrove, L., Lockett, T., Head, R. and Topping, D.L. 2012. A review of the Potential Mechanisms for the Lowering of Colorectal Oncogenesis by Butyrate. British Journal of Nutrition, 108:820–831.
  • Referans 12 García-Cayuela, T., Díez-Municio, M., Herrero, M., M. Martínez-Cuesta, M.C., Peláez, C., Requena, T., Moreno, F.J. 2014. Selective Fermentation of Potential Prebiotic Lactose-Derived Oligosaccharides by Probiotic Bacteria. International Dairy Journal, 38:11–15.
  • Referans 13 Gibson, G.R., Rastall, R.A. 2006. Prebiotics: Development & Application. John Wiley & Sons Ltd, England, 256 p.
  • Referans 14 Gomes A.M.P., Malcata F.X. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, Biochemical, Technological and Therapeutical Properties Relevant for Use as Probiotics. Trends in Food Science and Technology, 10: 39–157.
  • Referans 15 González-Rodríguez, I., Ruiz, L., Gueimonde, M., Margolles, A., Sanchez, B. 2013. Factors Involved in the Colonization and Survival of Bifidobacteria in the Gastrointestinal Tract. FEMS Microbiology Letters, 340:1–10.
  • Referans 16 Harmayani, E., Aprilia, V., Marsonoa, Y. 2014. Characterization of Glucomannan from Amorphophallus oncophyllus and its Prebiotic Activity In vivo. Carbohydrate Polymers, 112: 475–479.
  • Referans 17 Hongpattarakerea, T., Cherntonga, N., Wichienchotb, S., Kolidac, S., Rastall. R.A. 2012. In vitro Prebiotic Evaluation of Exopolysaccharides Produced by Marine Isolated Lactic Acid Bacteria. Carbohydrate Polymers, 87:846– 852.
  • Referans 18 Jagdale, S.P., Shimpi, S., Chachad, D. 2009. Pharmacological Studies of ‘Salep’. Journal of Herbal Medicine and Toxicology, 3(1):153–156.
  • Referans 19 Jahromi, H.K., Pourahmad, M., Abedi, H.A., Karimi, M., Jahromi, Z.K. 2018. Protective Effects of Salep against Isoniazid Liver Toxicity in Wistar Rats. Journal of Traditional and Complementary Medicine, 8:239–243.
  • Referans 20 Kaplan, H., Hutkins, W.R. 2000. Fermentation of fructooligosaccharides by lactic acid bacteria and Bifidobacteria. Applied Environmental Microbiology, 6:2682–2684.
  • Referans 21 Keithley, J., Swanson, B. 2005. Glucomannan and Obesity: A Critical Review. Alternative Therapies, 11(6): 30–34.
  • Referans 22 Kerry, R.G., Patra, J.K., Gouda, S., Park, Y., Shin, H-S., Das, G. 2018. Benefaction of Probiotics for Human Health:A Review. Journal of Food and Drug Analysis, xxx:1–13.
  • Referans 23 Markowiak, P., Śliżewska, K. 2017. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9): 1–30.
  • Referans 24 McNabney, S.M., Henagan, T.M. 2017. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients, 9(12):1–28.
  • Referans 25 Modler, H.W. 1994. Bifidogenic Factors - Sources, Metabolism and Applications. International Dairy Journal, 4(5):383–407.
  • Referans 26 Morrison, D.J., Preston, T. 2016. Formation of Short Chain Fatty Acids by the Gut Microbiota and their Impact on Human Metabolism. Gut Microbes, 7:189–200.
  • Referans 27 Muller, W.S., Arcidiacono, S., Liebowitz, A., Racicot, K., Stenhouse, P., Soares, J. 2012. Growth Studies of Probiotic Bacteria On Short Chain Glucomannan, A Potential Prebiotic Substrate. U.S. Army Natick Soldier Research, Development and Engineering Center Natick, Massachusetts, 18 p.
  • Referans 28 Mumcu, S.A., Temiz, A. 2014. Effects of Prebiotics on Growth and Acidifying Activity of Probiotic Bacteria. Gıda, 39:71–77.
  • Referans 29 Onakpoya, I., Posadzki, P., Ernst, E. 2014. The Efficacy of Glucomannan Supplementation in Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of the American College of Nutrition, 33:70–78.
  • Referans 30 Pan, X., Chen, F., Wu, T., Tang, H., Zhao, Z. 2009. Prebiotic Oligosaccharides Change The Concentrations of Short-Chain Fatty Acids and The Microbial Population Of Mouse Bowel. Journal of Zhejiang University. Science B, 10(4): 258–263.
  • Referans 31 Pessione, A., Lo Bianco, G., Mangiapane,E., Cirrincione,S., Pessione, E. 2015. Characterization of Potentially Probiotic Lactic Acid Bacteria Isolated from Olives: Evaluation of Short Chain Fatty Acids Production and Analysis of the Extracellular Proteome. Food Research International, 67:247–254.
  • Referans 32 Pourahmad, M., Jahromi, K.H., Jahromi, K.Z. 2015. Protective Effect of Salep on Liver. Hepatitis Monthly, 5(4): e28137.
  • Referans 33 Rios-Covian, D., Arboleya, S., Hernandez-Barranco, A.M., Alvarez-Buylla, J.R., Ruas-Madiedo, P., Gueimonde, M., de los Reyes-Gavilan, C.G. 2013. Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria. Applied and Environmental Microbiology, 79 (23):7518–7524.
  • Referans 34 Shigwedha, N., Hal, P. H-V., Jia, L., Sichel, L., Zhang, S. 2016. Prebiotics: Metabolism and Symbiotic Synergy with Probiotics in Promoting Health. In: Rao, V. (Ed) Promoting Health, Probiotics and Prebiotics in Human Nutrition and Health, IntechOpen, pp. 41–57.
  • Referans 35 Shokryazdana, P., Jahromia, M.F., Lianga, J.B. Hoc, Y.W. 2017. Probiotics: From Isolation to Application. Journal of the American College of Nutrition, 8(36): 666–676.
  • Referans 36 Sousa, S., Pinto, J., Pereira, C., Malcata, F.X., Pacheco, M.T.B., Gomes, A.M., Pintado, M. 2015. In vitro Evaluation of Yacon (Smallanthus sonchifolius) Tuber Flour Prebiotic Potential. Food and Bioproducts Processing, 95:96–105.
  • Referans 37 Staiano, A., Simeone, D., Giudice, E. D., Miele, E., Tozzi, A., Toraldo, C. 2000. Effect of the Dietary Fiber Glucomannan on Chronic Constipation in Neurologically İmpaired Children. The Journal of Pediatrics, 41–45.
  • Referans 38 Tester, R., Al-Ghazzewi, F. 2017. Glucomannans and Nutrition. Food Hydrocolloids, 68:246–254.
  • Referans 39 Underwood, M.A, German, J.B., Lebrilla, C.B., Mills, D.A. 2015. Bifidobacterium longum subspecies infantis: Champion Colonizer of the Infant Gut. Pediatric Research, 77: 229–235.
  • Referans 40 Voragen, A.G.J. 1998. Technological Aspects of Functional Food-Related Carbonhydrate. Trends in Food Science and Technology, 9:328.
  • Referans 41 Wang, J., Suna, B., Caoa, Y., Wanga, C. 2010. In vitro Fermentation of Xylooligosaccharides from Wheat Bran Insoluble Dietary Fiber by Bifidobacteria. Carbohydrate Polymers, 82:419–423.
  • Referans 42 Wong, J.M, de souza, R., Kendall, C.W., Emam, A., Jenkins, D.J. 2006. Colonic Health: Fermentation and Short Chain Fatty Acids. Journal of Clinical Gastroenterology, 40(3):235–243.
  • Referans 43 Zoumpopoulou, G., Kazou, M., Alexandraki, V., Angelopoulou, A., Papadimitriou, K., Pot, B., Tsakalidou, E. 2018. Probiotics and Prebiotics: An Overview on Recent Trends. In: Di Gioia, D., Biavati, B. (Eds), Probiotics and Prebiotics in Animal Health and Food Safety, Springer International Publishing AG, pp. 1–34.
Harran Tarım ve Gıda Bilimleri Dergisi-Cover
  • Başlangıç: 1997
  • Yayıncı: Harran Üniversitesi Ziraat Fakültesi