Farklı Rasyon Senaryolarının İvesi Koyunlarında Dışkı Kaynaklı Sera Gazları Emisyonuna Etkileri

Bu çalışma farklı oranda C4:C3 bitkilerinden oluşan rasyonların İvesi koyunlarında dışkı gaz emisyonlarına etkilerini incelemek için yapılmıştır. Düşük düzeyde C4:C3 (Grup A–0.95:1) oranına sahip rasyonlardan yüksek C4:C3 oranlı (B–1:1; C–1.5:1; D–2:1) rasyonlara kadar değişen gruplarda TMR alan koyunların dışkılarından yayılan sera gazları karşılaştırıldı. Deneme her grupta 4 ferdi tekerrür olan ve 4 gruptan oluşan (toplam:16) tesadüf parselleri desenine göre düzenlendi. Rasyonlarda ana faktörler yonca ve mısır olmuştur. Canlı ağırlık değişimi ve yem dönüşüm oranı farklı C4:C3 oranlarından etkilenmiştir. Bu değerler benzer yem tüketimlerine rağmen daha yüksek miktarda C4 bitkisi tüketen gruplarda daha iyi durumda olmuştur. Dışkı içeriği, N, pH, ve NDF hariç etkilenmemiştir. Grup B ve D’de toplam N sindirim düzeyi rasyona mısır silajı dâhil edilince artmıştır. C3 bitkilerinin kaba ve konsantre yemler olarak tercih edilmesi hem dışkı miktarını hem de dışkıdan yayılan gaz düzeyini artırmıştır (P = 0.04 ve linear etki = 0.03). C4:C3 oranından bağımsız olarak yonca kuru otu Grup A ve C’de hem dışkı miktarını hem de dışkıdan yayılan N2O emisyonunu artırmıştır. Ayrıca yine C4:C3 oranından bağımsız olarak sıcaklık, nem ve küf dışkıdan CO2 salınmasını önemli düzeyde artırmıştır

Effects of Different Ration Scenarios on Fecal-Greenhouse Gas Emissions from Awassi Ewes

This study investigated the effect of diets with different ratios of C4:C3 plant materials on CH4, CO2, and N2O emissions from manure produced by Awassi ewes. The trial compared the production of greenhouse gases from manures produced by sheep fed diets with low C4:C3 ratios (Group A–0.95:1) to those fed high C4:C3 plant ratios (Groups B–1:1; C–1.5:1; D–2:1). The trial was a randomized design with four groups and each group contained four sheep (total 16). The main feedstuffs were alfalfa and maize based combinations with similar nutrient contents. The body weight gain (BWG) and the feed conversion ratio (FCR) of the sheep were affected by C4:C3 ratio. They increased in the higher C4 plant-consuming groups, despite similar feed consumption. Manure components were not affected by the feed ratio, except for N, pH, and Neutral detergent fiber (NDF). Total diet digestibility of N increased cubically when maize silage was included (Groups B and D). The use of C3 plants as forage or grain sources led to increased manure and manure gas production (P = 0.04 and linear effect: 0.03). Regardless of the C4:C3 ratio, alfalfa increased N2O emissions from manures because more manure was produced by groups A and C. The temperature, humidity and mold of the manures were the main causes of the rise in the amount of manure based CO2 in the alfalfa and maize based groups.

___

AOAC - Association of Official Analytical Chemistry. 2016. Official methods of analysis. 20th ed. AOAC International, Washington, DC, USA

Castillo, A.R., Kebreab, E., Beever, D.E., and France J. 2000. Review of efficiency of nitrogen utilization in lactating dairy cows and its relationship with environmental pollution. Journal Animal and Feed Science 9: 1-32.

Caswell, H., and Reed, F.C. 1976. Plant–herbivore interactions: the indigestibility of C4 bundle sheath cells by grasshoppers. Oecologia 26: 151–156.

Chung, Y.E., He, M.L., McGinn, S.M., McAllister, T.A., and Beauchemin, B.A. 2011. Linseed suppresses enteric methane emissions from cattle fed barley silage but not from those fed grass hay. Animal Feed Science and Technology 166: 167321-329.

Czepiel, P., Douglas, E.,Harriss, R., and Crill, P. 1996. Measurements of N2O from composted organic wastes. Environmental Science and Technology 30: 2519–2525.

Ehleringer, J.R., and Monson, R.K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24: 411–439.

Hassanat, F.,Gervais, R., and Benchaar, C. 2017.Methane production, ruminal fermentation characteristics, nutrient digestibility, nitrogen excretion, and milk production of dairy cows fed conventional or brown midrib corn silage. Journal of Dairy Science 4: 2625–2636.

Hawkins, J., Weersink, A., Wagner-Riddle, C., and Fox, G. 2015.Optimizing ration formulation as a strategy for greenhouse gas mitigation in intensive dairy production systems. Agricultural Systems 137: 1–11.

Hellebrand, H.J., and Kalk, W.D. 2001.Emission of methane, nitrous oxide, and ammonia from dung windrows. Nutrient Cycling in Agroecosystems 60:83–87.

Hristov, A.N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J., and Oosting, S. 2013. Mitigation of greenhouse gas emissions in livestock production. P.25-26. In: A review of technical options for non-CO2 emission. FAO, Rome, Italy.

Johnson, D.E., Johnson, K.A., Ward, G.M., and Braine, M.E. 2000. Ruminants and Other Animals – In: Khalil, M. A. K. (eds.) Atmospheric Methane: Its Role the Atmospheric Environment. Springer-Verlag, Berlin, Germany, pp. 112-133.

Kissinger, W.E., Koelsch, R.K., Erickson, G.E., and Klopfenstein, T.J. 2007.Charecteristics of slurry harvested from beef cattle feedlots. Applied Engineering in Agriculture 23(3):357-365.

Lettat, A., Hassanat, F., and Benchaar, C. 2013. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities. Journal of Dairy Science 96(8):5237-5248.

Levis, A.J.,Jonker, J.S.,Jameison, D.L.,Arieti, R.S., and Tsai, P. 2007. Nutrient requirements of sheep tables. p. 244. In: NRC. Nutrient Requirements of small ruminants. National Academy Press. Washington DC, USA. Paula, T. Whitacre.

Møller, H.B.,Moset, V.,Brask, M.,Weisbjerg, M.R., and Lund, P. 2014. Slurries composition and slurry derived methane yield from dairy cows: influence of diet with focus on fat supplement and roughage type. Atmospheric Environment 94:36–43.

Mosier, A.,Kroeze, C.,Nevison, C.,Oenema, O.,Seitzinger, S., and Cleemput, O.V. 1998.Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems 52: 225–248.

Petrucci, R.H., Herring, G., Madura, J., and Bissonnette, C. 2010. Thermo chemistry. Chapter 7.p.282. In: Petrucci, R.H. (eds) General Chemistry. Principles and modern applications with mastering chemistry. 10th ed. Canada.

Ramin, M., and Huhtanen, P. 2013. Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science 96: 2476–2493.

Sponheimer, M., Robinson, T., Roeder, B., Hammer, J., Ayliffe, L., Passey, B., Cerling, T., Dearing, D., and Ehleringer, J. 2003. Digestion and passage rates of grass hays by llamas, alpacas, goats, rabbits, and horses. Small Ruminant Research 48: 149–154.

TUIK - Turkish Statistical Institute. 2016. Animal production statistics. Hayvansal üretim istatistikleri. T.C. Kalkınma Bakanlığı. Özel ihtisas komisyon raporu (In Turkish). Ankara. Turkey

Van Soest, P.J., Robertsoni, J.B., and Lewis, B.A. 1991.Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 583-3597.

Weiss, W.P., Willet, L.B., St Pierre, N.R., Borger, D.C., Mckelvey, T.R., and Wyatt, D.J. 2009. Varying forage type, metabolizable protein concentration, and carbohydrate source affects slurry excretion, slurry ammonia, and nitrogen metabolism of dairy cows. Journal of Dairy Science 92: 5607–5619.

Wulf, S., Maeting, M., and Clemens, J. 2002. Effect of application technique on the emission of trace gases (NH3, N2O, CH4) after spreading co fermented slurry on arable and grassland. Part 2. GHG emissions. Journal of Environmental Quality 31: 1795-1801.

___

APA Yurtseven, S. , Avcı, M. , Çetin, M. , Öztürk, İ. & Boğa, M. (2018). Effects of Different Ration Scenarios on Fecal-Greenhouse Gas Emissions from Awassi Ewes . Harran Tarım ve Gıda Bilimleri Dergisi , 22 (3) , 304-315 . DOI: 10.29050/harranziraat.399096