Doğal ortamlarında yetişen Salsola türlerinin biyokimyasal ve fizyolojik tepkilerinin araştırılması

Halofit bitkiler toprak ıslahı uygulamaları için kullanılan doğal olarak tuza-tolerant bitkilerdir.  Salsola türlerinin (S. ruthenica, S. dendroides ve S. crassa) tuz toleransına karşı biyokimayasal ve fizyolojik tepkileri doğal ortamlarında peroksidaz (POX, EC.1.11.1.7) ve katalaz (CAT, EC.1.11.1.6) enzimleri, inorganik iyon birikimi, prolin (Pro), malondialdehid (MDA) sentezi, ve klorofil içerkileri (Chl-a, Chl-b) gibi parametreler ölçülerek incelenmiştir.  Sonuçlar, Salsola türlerinin tuza tepki bakımından farklılık olduğunu göstermiştir.  Bütün Salsola türleri benzer tepkiler vermesine rağmen, S. ruthenica daha yüksek MDA, prolin ve antioksidan enzim ekspresyonları ile S. dendroides ve S. crassa türlerinden ayrılmıştır.  Her üç türün yaprakları yüksek düzeyde Na+ içerirken K+, Ca++ ve Mg++içeriklerinde düşüş görülmüştür.  S. ruthenica çeşidi 94.5 g kg-1 KA of Na+ iyonu içerirken S. dendroides ve S. crassa sırasıyla, 82.1 g kg-1 KAve 71.4 g kg-1 KA Na+ iyonu içermektedir. Salsola türlerinde düşük MDA ve yüksek metabolit sentezi ile enzim artışları, özellikle S. ruthenica’de, bu türlerin fitoremediasyon çalışmaları için rahatlıkla kullanılabileceğini göstermiştir. Orta derecede tuzlu topraklarda tuz stresini azaltmak için ortalama boy ve kök uzunluğuna sahip bu bitkilerin arkadaş bitki olarak glikofitler ile birlikte kullanılma potansiyeli oldukça yüksektir.

Evaluation of biochemical and physiological responses of salsola spp at their natural habitats

Halophytes are naturally salt-tolerant plants that are useful for soil remediation applications.  Biochemical and physiological responses of Salsola species, namely; S. ruthenica, S. dendroides and S. crassa were evaluated at their natural habitats for their salt tolerance in which the biochemical responses such as peroxidase (POX, EC.1.11.1.7) and catalase (CAT, EC.1.11.1.6) enzymes, inorganic ion accumulation, proline (Pro), malondialdehyde (MDA), chlorophyll contents (Chl-a, Chl-b) were measured. The results showed that variation existed in Salsola spp. in their response to salinity. Although all Salsola spp. showed similar trends, S. ruthenica expressed higher activities of antioxidant enzymes along with the higher accumulation of proline, MDA contents than those of S. dendroides and S. crassa spp. Leaves of all three species exhibited high Na+ content while K+, Ca++ and Mg++ contents are low. S. ruthenica accumulated 94.5 g kg-1 DW of Na+ ions while S. dendroides and S. crassa accumulated 82.1 g kg-1  DW and 71.4 g kg-1 DW Na+ ions, respectively. The increase in enzymatic activities and higher metabolic contents and lower MDA levels in Salsola spp., especially in S. ruthenica, suggested that these species could well be used for phytoremediation purposes. With moderate height and root-length, these plants have high potentials to be used as companion plants with glycophytes to reduce salt stress in moderately saline conditions. 

___

  • Acosta-Motos, J.R.; Hernández, J.A.; Álvarez, S.; Barba-Espín, G.; Sánchez-Blanco, M.J. Long-term resistance mechanisms and irrigation critical threshold showed by Eugenia myrtifolia plants in response to saline reclaimed water and relief capacity. Plant Physiol. Biochem. 2017, 111, 244–256.
  • Akhtar A., Yun D.J., 2017. Salt Stress Tolerance; What Do We Learn From Halophytes? J. Plant Biol. 60:431-439.
  • Albert, R. 1982. Halophyten. In: Kinzel H, ed. Pflanzen6kologie und Minerals to ffwechsel. Stuttgart: Verlag Eugen Ulmer, 33-204.
  • Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., Murata N., 2000. Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol, 123: 1047–1056.
  • Anaç, S., Aksoy, U., 2000. Foreword. International Symposium on Techniques to Control Salination for Horticultural Productivity. 30 March 2002, Antalya, Turkey.
  • Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, 72, 248–254.
  • Chapman, H.D. and Pratt, P.F., 1961. Methods of analysis for soils, plants and waters. 1-309. University of California, Division of Agricultural Sciences. USA.Cuartero, J., Fernandez-Munoz, R., 1999. Tomato and salinity. Sci. Hort. 78, 83–125.
  • Cvikrova, M., Hrubcova, M., Vagner, M., Machackova I. and Eder J. (1994) Phenolic acids and peroxidase activity in Alfalfa (Medicago sativa) embryogenic cultures after ethephon treatment. Plant Physiol. 91(2), 226-233.
  • Davis, P.H., Mill, R.R., Tan, K., 1988. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press. Vol. 10. (Suppl. 1), 324-326.
  • Dikilitaş, M., Çullu, M. A., Karakaş, S., Aydemir, S., Saygan, E., 2007. Possible use of weeds fort he remediation of saline areas ın gap region and their biochemical responses to high level of salinity. Second Annual YOK-SUNY Collaboration Symposıum. Scientific Collaboration For Sustainable Development., 23-25 May., 2007. Adana, 41-49.
  • Gharaibeh, M.A., Eltaif, N.I., Albalasmeh, A.A., 2011. Eclamatıon of Highly Calcareous Saline Sodic Soil Using Atriplex Halimus and By-Product Gypsum, Int. J. of Phytoremediation,13: 873–883,2011.
  • Glenn, E.P., Brown, J.J, Blumwald, E., 1999. Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci. 18:227–255.
  • Grieve, C.M., Suarez, D.L., 1997. Purslane (Portulaca oleracea L.): A Halophytic crop for drainage water reuse systems. Plant and Soil, 192: 277–283.
  • Hasanuzzaman, M., Nahar, K., Alam, Md. M., Prasanta C. Bhowmik, Hossain, Md. A., Rahman, M.M. Prasad, M.N.V., Ozturk, M., Fujita, M., 2014. Potential Use of Halophytes to Remediate Saline Soils. Hindawi Publishing Corporation BioMed Research Int. ID 589341, 12 pages http://dx.doi.org/10.1155/2014/589341.
  • Heuer, B., Plaut, Z., 1989. Photosynthesis and osmotic adjustment of two sugarbeet cultivars grown under saline conditions. Journal of Experimental Botany 40: 437-440.
  • Jesus, J.M, Danko, A.S, Fiúza, A., Borges, M.T.2015. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res Int. 2015 May;22(9): 6511-25.
  • Johnson, C.M., Ulrich, A., 1959. II. Analytics methods for use in plant analysis. California Agriculture Experiment Station. Bull. 799. Joshi R., Mangu, V.R., Bedre, R., Sanchez, L., Pilcher, W., Zandkarimi, H., Baisakh, N., 2015. Salt Adaptation Mechanisms of Halophytes: Improvement of Salt Tolerance in Crop Plants, G.K. Pandey (ed.), Elucidation of Abiotic Stress Signaling in Plants, Springer Science Business Media New York, DOI 10.1007/978-1-4939-2540-7_9.
  • Karakas, S. 2013. Development of tomato growing in soil differing in salt levels and effects of companion plants on same physiological parameters and soil remediation. Graduate school of natural and applied sciences, soil sciences and plant nutrition, Ph.D. Thesis, University of Harran, Şanlıurfa, Turkey.
  • Kaya, A., İnan, M., 2017. Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3): 332-342.
  • Keisham, M., Mukherjee, S., Bhatla, S.C., 2018. Mechanisms of Sodium Transport in Plants—Progresses and Challenges. Int.l J. Molecular Sci. 19, 647.
  • Marschner, H, Kylin A, Kuiper PJC. 1981. Differences in salt tolerance of three sugar beet (Beta vulgaris) genotypes. Physiologia Plantarum, 51: 234-238.
  • Mckell, C.M., 1994. Salinity tolerance in Atriplex species: fodder shrubs of arid lands. In: Passarakli, P. (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker, New York, pp. 497–503.
  • Milosevic, N., Slusarenko, A.J., 1996. Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiol. Mol. Plant Pathol, 49:143-158. Milosevic, N., Slusarenko, A.J., 1996. Active Oxygen Metabolism and Lignifications in The Hypersensitive Response in Bean. Physiol. Molecular Plant Pathol. 49: 143-158.
  • Orcutt, D.M., Nilsen, E.T., 2000. Phytotoxicity and soil pollution: heavy metals and xenobiotics. In: The Physiology of plants under stress, soil and biotic factors. New York, JohnWiley and Sons, Inc. p. 481–517.
  • Premchandra, G.S, Saneoka, H and Ogata, S., 1990. Cell membrane stability, an indicator of drought tolerance as affected by applied nitrogen in soybean. J. Agri. Sci. 115:63-66.
  • Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. US Salinity Lab., US Department of Agriculture Handbook 60. California, USA.
  • Richardson, S.G. 1982. High and low sodium biotypes of four wing saltbush: their responses to sodium and potassium in retorted oil shale. Journal of Range Management 35: 795-797.
  • Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B.H., Matsumoto, T.K., Koiwa, H., Zhu, J.K., Bressan, R.A., Hasegawa, P.M., 2001. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc. Nat. Acad. Sci. 98, 14150–14155.
  • Sairam, R.K And Sexena, D., 2000. Oxidative Stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J. Agronomy and Crop Sci, 184: 55. 345.
  • Tug, G.N., Yaprak, A.E., 2017. Halophytes as a Potential Food Source. Anadolu, J. of AARI, 27 (2), 78-81.
  • Wang, X.S., Han, J.G., 2009: Changes of proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agric. Sci. China. 8 (4): 431-440.
  • Willis, J.C. 1973. A Dictionary of the flowering plants and ferns. Cambridge Univ. Press, Cambridge. Forbes, A. C. & Allred, K. W. 1999. An investigation of Salsola L. (Chenopodiaceae) in New Mexico. New Mexico Bot., 12: 2-9.
Harran Tarım ve Gıda Bilimleri Dergisi-Cover
  • Başlangıç: 1997
  • Yayıncı: Harran Üniversitesi Ziraat Fakültesi