Effect of pupil size on the measurements obtained by optical coherence thomography in children

Amaç: Okul öncesi yaş grubundaki sağlıklı çocuklarda pupil büyüklüğünün; Stratus OKT ile elde edilen maküla, RSLT kalınlık ve optik disk ölçümlerine etkisini incelemek. Gereç ve Yöntem: Çalışmada, yaşları 3 ile 6 arasında değişen 111 sağlıklı çocuk incelendi. Çocuklar, dilatasyon öncesi ve sonrası maküla, RSLT kalınlığı ve optik disk parametreleri için OKT ile ölçüldü. Çocukların pupil boyutları, Scheimpflug kamera ile dilatasyon öncesi ve sonrasında belirlendi. Pupil dilatasyonu öncesi ve sonrasında elde edilen veriler istatistiksel olarak karşılaştırıldı. Bulgular: Çalışmamıza 94 çocuğun 147 gözü dahil edildi. Çocukların ortalama yaşı 58.56±11.24 ay (aralık:34-78 ay). Çocukların dilatasyon öncesi ve sonrası pupil çapı sırasıyla 2.76±0.50 mm (aralık:1.5 mm-4.57 mm) ve 7.27±1.02 mm (aralık:3.08 mm-9.70 mm) idi. Pupil dilatasyonu öncesi ve sonrası elde edilen ölçüm değerleri arasında istatistiksel olarak anlamlı farklılık sadece nazal-iç, superior-iç ve nazal-dış maküla segmentlerinde elde edildi (sırasıyla, p

Çocuklarda pupil büyüklüğünün optik koherens tomografi ile elde edilen ölçümlere etkisi

Purpose: To evaluate the effect of pupil size on macular and RNFL thickness, and optic disc measurements obtained by Stratus OCT in healthy preschoolers. Material and Methods: One hundred and eleven healthy children aged between 3 and 6 years were examined in this study. The children were measured by optical coherence thomography (OCT) before and after pupil dilation for macula and RNFL thickness, and optic disc parameters. The pupil sizes of the children were determined by the Scheimpflug camera before and after pupil dilation. The measurements taken before and after pupil dilation were compared statistically. Results: One hundred and forty seven eyes of ninety four children were included in our study. The mean age of the children was 58.56±11.24 months (range: 34-78 months). The pupil size of the children before and after dilation was 2.76±0.50 mm (range: 1.5 mm- 4.57 mm) and 7.27±1.02 mm (range: 3.08 mm- 9.70 mm), respectively. There was a statistically significant difference between the values obtained before and after pupil dilation in the nasal inner, superior inner, and nasal outer macular segments (p<0.001; p<0.001 and p=0.046, respectively). The values before dilation were significantly different from those after dilation in the parameters of cup area, cup area/disc area ratio, vertical cup/disc ratio, and signal strength of optic disc scan (p=0.034; p= 0.036; p=0.005 and p=0.001, respectively). There was no statistically significant difference between the values before and after pupil dilation for all RNFL parameters. Conclusion: In preschoolers, pupil size may partially affect the measurements of the macula and optic disc obtained by OCT-3 whereas the RNFL measurements are not influenced by pupil size.

Kaynakça

1. Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 2004;137:156-69.

2. Wang XY, Huynh SC, Burlutsky G, et al. Reproducibility of and effect of magnification on optical coherence tomography measurements in children. Am J Ophthalmol 2007;143:484-8.

3. Salchow DJ, Hutcheson KA. Optical coherence tomography applications in pediatric ophthalmology. J Pediatr Ophthalmol Strabismus 2007;44:335-49.

4. Albini TA, Lakhanpal RR, Foroozan R, et al. Macular hole in cat scratch disease. Am J Ophthalmol 2005;140:149-51.

5. Skarmoutsos F, Sandhu SS, Voros GM, et al. The use of optical coherence tomography in the management of cystoid macular edema in pediatric uveitis. J AAPOS 2006;10:173-4.

6. Seo JH, Yu YS, Kim JH, et al. Correlation of visual acuity with foveal hypoplasia grading by optical coherence tomography in albinism. Ophthalmology 2007;114:1547-51.

7. Patel CK. Optical coherence tomography in the management of acute retinopathy of prematurity. Am J Ophthalmol 2006;141:582-4.

8. Apushkin MA, Fishman GA, Janowicz MJ. Correlation of optical coherence tomography findings with visual acuity and macular lesions in patients with X-linked retinoschisis. Ophthalmology 2005;112:495-501.

9. Witkin AJ, Ko TH, Fujimoto JG, et al. Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol 2006;142:945-52.

10. Shields CL, Materin MA, Shields JA. Review of optical coherence tomography for intraocular tumors. Curr Opin Ophthalmol 2005;16:141-54.

11. Espinoza G, Rosenblatt B, Harbour JW. Optical coherence tomography in the evaluation of retinal changes associated with suspicious choroidal melanocytic tumors. Am J Ophthalmol 2004;137:90-5.

12. Shields CL, Eagle RC, Ip MS, et al. Two discrete uveal melanomas in a child with ocular melanocytosis. Retina 2006;26:684-7.

13. Shields CL, Mashayekhi A, Luo CK, et al. Optical coherence tomography in children: analysis of 44 eyes with intraocular tumors and simulating conditions. J Pediatr Ophthalmol Strabismus 2004;41:338-44.

14. Salchow DJ, Weiss MJ. Retinal pigment epithelial detachment in sarcoidosis. Ocul Immunol Inflamm 2006;14:245-8.

15. Orefice JL, Costa RA, Campos W, et al. Third-generation optical coherence tomography findings in punctate retinal toxoplasmosis. Am J Ophthalmol 2006;142:503-5.

16. Salman A, Parmar P, Rajamohan M, et al. Optical coherence tomography in choroidal tuberculosis. Am J Ophthalmol 2006;142:170-2.

17. Vu CD, Brown J, Jr., Korkko J, et al. Posterior chorioretinal atrophy and vitreous phenotype in a family with Stickler syndrome from a mutation in the COL2A1 gene. Ophthalmology 2003;110:70-7.

18. Hess DB, Asrani SG, Bhide MG, et al. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol 2005;139:509-17.

19. Mrugacz M, Bakunowicz-Lazarczyk A. Optical coherence tomography measurement of the retinal nerve fiber layer in normal and juvenile glaucomatous eyes. Ophthalmologica 2005;219:80-5.

20. El-Dairi MA, Holgado S, O’Donnell T, et al. Optical coherence tomography as a tool for monitoring pediatric pseudotumor cerebri. J AAPOS 2007;11:564-70.

21. Kanamori A, Nakamura M, Matsui N, et al. Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs. Ophthalmology 2004;111:2278-83.

22. Roh S, Noecker RJ, Schuman JS, et al. Effect of optic nerve head drusen on nerve fiber layer thickness. Ophthalmology 1998;105:878-85.

23. Ho J, Sull AC, Vuong LN, et al. Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology 2009;116:1960-70.

24. Qian J, Wang W, Zhang X, et al. Optical coherence tomography measurements of retinal nerve fiber layer thickness in chinese children and teenagers. J Glaucoma 2011;20:509-13.

25. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325-32.

26. Zafar S, Gurses-Ozden R, Vessani R, et al. Effect of pupillary dilation on retinal nerve fiber layer thickness measurements using optical coherence tomography. J Glaucoma 2004;13:34-7.

27. Paunescu LA, Schuman JS, Price LL, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 2004;45:1716-24.

28. Hsu SY, Tsai RK. Analysis of retinal nerve fiber layer and macular thickness measurements in healthy Taiwanese individuals using optical coherence tomography (Stratus OCT). J Glaucoma 2008;17:30-5.

29. Smith M, Frost A, Graham CM, et al. Effect of pupillary dilatation on glaucoma assessments using optical coherence tomography. Br J Ophthalmol 2007;91:1686-90.

30. Savini G, Zanini M, Barboni P. Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT. J Glaucoma 2006;15:336-40.

31. Baumann M, Gentile RC, Liebmann JM, et al. Reproducibility of retinal thickness measurements in normal eyes using optical coherence tomography. Ophthalmic Surg Lasers 1998;29:280-5.

32. Koozekanani D, Roberts C, Katz SE, et al. Intersession repeatability of macular thickness measurements with the Humphrey 2000 OCT. Invest Ophthalmol Vis Sci 2000;41:1486-91.

33. Wang RC KD, Herderick EE, et al. Effect of pupil dilation and scanning power on retinal thickness measurements using optical coherence tomography. Invest Ophthalmol Vis Sci 2000;41:173.

34. Eriksson U, Alm A. Repeatability in and interchangeability between the macular and the fast macular thickness map protocols: a study on normal eyes with Stratus optical coherence tomography. Acta Ophthalmol 2009;87:725-30.

35. Chen HY, Chang YC, Wang IJ, et al. Comparison of glaucoma diagnoses using stratus and cirrus optical coherence tomography in different glaucoma types in a chinese population. J Glaucoma 2012.

36. Hoh ST, Greenfield DS, Liebmann JM, et al. Effect of pupillary dilation on retinal nerve fiber layer thickness as measured by scanning laser polarimetry in eyes with and without cataract. J Glaucoma 1999;8:159-63.

37. Cheng CS, Natividad MG, Earnest A, et al. Comparison of the influence of cataract and pupil size on retinal nerve fibre layer thickness measurements with time-domain and spectral-domain optical coherence tomography. Clin Experiment Ophthalmol 2011;39:215-21.

38. Massa GC, Vidotti VG, Cremasco F, et al. Influence of pupil dilation on retinal nerve fibre layer measurements with spectral domain OCT. Eye (Lond) 2010;24:1498-502.

39. Savini G, Carbonelli M, Parisi V, et al. Effect of pupil dilation on retinal nerve fibre layer thickness measurements and their repeatability with Cirrus HD-OCT. Eye (Lond) 2010;24:1503-8.

Kaynak Göster

  • ISSN: 1305-9173
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2006

3.8b 1.9b

Sayıdaki Diğer Makaleler

Optik nevrit olmadan yeni tanı multiple sklerozda retina sinir lifi tabakası kalınlığı

BERRAK ŞEKERYAPAN GEDİZ, Serkan KIRBAŞ, Kemal TÜRKYILMAZ, Veysi ÖNER, Mustafa DURMUŞ

Effect of pupil size on the measurements obtained by optical coherence thomography in children

VOLKAN YETER, Nurşen ARITÜRK

Glokomatöz görme alanı kaybı olan olgularda katarakt ekstraksiyonunun sıta görme alanı üzerine etkisi

Hasan Basri ARİFOĞLU, Hüseyin SİMAVLI, İnci MİDİLLİOĞLU, Hasan Basri ÇAKMAK, Şaban ŞİMŞEK

Göz içi lens gücünün hesaplamasında optik düşük-koherens reflektometri ve immersiyon ultrasonik biometri ölçümlerinin karşılaştırılması

Semra Akkaya TURHAN, Ebru TOKER

Fakotrabekülektomi sonrası filtrasyonu engelleyen disloke göz içi lensi ve tedavisi

M. Sinan SARICAOĞLU, Ahmet KARAKURT

Yelpaze tekniği ile küçük kesiden göz içi lens değişimi

Tolga KOCATÜRK, HARUN ÇAKMAK, Sema Oruç DÜNDAR

Sağlıklı bireylerde optik koherens tomografi cihazı kullanılarak yapılan retina sinir lifi tabakası kalınlığı ve arka kutup analiz ölçümlerinin tekrarlanabilirliği

Fatih ULAŞ, Adem SOYDAN, Mehmet BALBABA, Serdal ÇELEBİ

Comparison of anterior chamber depth measurements by the galilei dual-scheimpflug analyzer and conventional a-scan ultrasound

VOLKAN YETER, Nurşen ARITÜRK

Visual experience during phacoemulsification with anterior chamber maintainer under topical anesthesia

Mehmet BAYKARA, BERNA AKOVA BUDAK, MERAL YILDIZ, Günay ALYAMAÇ, Hikmet ÖZÇETİN

Pediatrik kataraktlar

Ali KÜÇÜKÖDÜK, SEZİN AKÇA BAYAR