Zeytin Yaprağının (Olea europaea L.)Kuruma Kinetiğinin İncelenmesi

Zeytin yaprakları (Olea europaea L.), içeriğinde bol miktarda bulunan fenolik maddeler sayesinde son yıllarda önemi artan bir üründür. Zeytin yaprakları, gıda, ilaç, kozmetik gibi farklı sanayilerde kullanılabilen bir ürün olmasına ve ülkemizde bol bulunmasına karşın değerlendirilememekte ve konu ile ilgili araştırmalar ise sınırlı kalmaktadır. Zeytin yapraklarının işlenmesinde kritik işlem kurutmadır, ancak zeytin yapraklarının kuruma kinetiği bilinmemektedir. Bu çalışmada, zeytin yapraklarının kuruma davranışlarının deneysel olarak tanımlanması amacıyla yapraklar tepsili kurutucuda kurutulmuştur. İnce tabaka prensibine dayanan 11 ayrı yarı-teorik modelle, kurutmada elde edilen deneysel sonuçların uygunluğu doğrusal olmayan regresyon analizi uygulanarak karşılaştırılmış, modellerin katsayıları hesaplanmıştır. Daha sonra ise deneysel sonuçlarla en iyi uyum gösteren modelin katsayıları hava hızını değişken alacak şekilde doğrusal olmayan regresyon analizi uygulanarak yeniden düzenlenmiştir. Buna göre 50 oC sıcaklık ve 0,5-1,5 m/s hava hızı aralığında zeytin yaprağının kuruma davranışlarıyla, Modifiye Henderson ve Pabis modelinin r = 0,99960 ve χ2 = 6,81 x 10-5 değerlerinde iyi uyum gösterdiği tespit edilmiştir. 

Drying Kinetics of Olive Leaves (Olea europaea L.) (Turkish with English Abstract)

Recently, interest on olive leaves (Oleaeuropaea L.) has been increased because the leaves are a rich source of phenolic compounds. Although olive leaves can be used in food, medicine and drug industries, their use and research on this matter is limited. The critical process in olive leaf treatment is drying and the drying behaviors of olive leaves are not known. In this study, olive leaves were dried in a tray drier to determine the dying behaviors of olive leaves. Eleven of semi-theoretical thin layer drying curve models were used to model the drying behaviors of olive leaves and non-linear regression analysis were performed to obtain the model that gives the best fit to the experimental data. After calculating the coefficients of the models, the effect of air velocity to the coefficients of models were determined at 50 oC with non-linear regression analysis. The primary criterion for selecting the best equation to describe the drying curve equation is correlation coefficient (r). In addition to r, the reduced chi-square (χ2) was used to determine the best fit. According to regression analysis, the best model describing the thin layer drying characteristics of olive leaves at 50 oC and air velocity interval of 0.5 and 1.5 m/s was Modified Henderson and Pabis model with r = 0.99960 and χ2 = 6.81 x 10-5.

___

  • Ranalli A, Contento S, Lucera L, Di Febo M, Marchegiani D, Di Fonzo V. 2006. Factors Affecting the Contents of Iridoid Oleuropein in Olive Leaves (Olea europaea L.). Journal of Agricultural and. Food Chemistry, 54:434-440.
  • Farag RS, El-baroty GS, Basuny AM. 2003. Safety evaluation of olive phenolic compounds as natural antioxidants. International Journal of Food Sciences and Nutrition, 54:159-174.
  • Akpinar EK. 2006. Mathematical modelling of thin layer drying process under open sun of aromatic plants. Journal of Food Engineering, 77:864-870.
  • Doymaz İ. 2006. Thin-layer drying behaviour of mint leaves. Journal of Food Engineering, 74:370-375.
  • Özbek B, Dadali G. 2007. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering, 83:541-549.
  • Akpinar EK, Bicer Y, Cetinkaya F. 2006. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 75:308-315.
  • Gunhan T, Demir V, Hancioglu E, Hepbasli A. 2005. Mathematical modelling of drying of bay leaves. Energy Conversion and Management, 46:1667-1679.
  • Panchariya PC, Popovic D, Sharma AL. (2002). Thin-layer modelling of black tea drying process. Journal of Food Engineering, 52:349-357.
  • Midilli A, Kucuk H, Yapar ZA. 2002. New model for single-layer drying. Drying Technology, 20: 1503-1513.
  • Fortes M, Okos MR. 1981. Non-equilibrium thermodynamics approach to heat and mass transfer in corn kernels. Transactions of American Society of Agricultural Engineers, 22:761-769.
  • Parry JL. 1985. Mathematical modelling and computer simulation of heat and mass transfer in agricultural grain drying. Journal of Agricultural Engineering Research, 54:339-352.
  • Akpinar EK. 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering, 73:75-84.
  • Özdemir M, Devres YO. 1999. The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42:225-233.
  • Delgado-Pertinez M, Gomez-Cabrera A, Garrido A. 2000. Predicting the nutritive value of the olive leaf (Olea europaea): digestibility and chemical composition and in vitro studies. Animal Feed Science and Technology, 87:187-201.
  • AOAC. 1990. Official Methods of Analysis, 14th Edition, Association of Official Analytical Chemists, Washington, DC, USA.
  • Mujumdar AS. 1987. Handbook of industrial drying. New Yok, Marcel Dekker.
  • Diamante LM, Munro PA. 1993. Mathematical modelling of the thin layer solar drying of sweet potato slices. Solar Energy, 51:271-276.
  • White GM, Bridges TC, Loewer OJ, Ross IJ. 1978. Seed coat damage in thin layer drying of soybeans as affected by drying conditions. ASAE paper no. 3052.
  • Zhang Q., Litchfield JB. 1991 An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology, 9:383-395.
  • Yagcioglu A, Degirmencioglu A, Cagatay F. 1999. Drying characteristics of laurel leaves under different conditions. Proceedings of the 7th international congress on agricultural mechanization and energy, ICAME’99, pp.565-569, Adana, Turkey.
  • Henderson SM. 1974. Progress in developing the thin layer drying equation. Transactions of American Society of Agricultural Engineers, 17:1167-1172.
  • Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. 1980. A model for ear corn drying. Transactions of American Society of Agricultural Engineers, 23:1261-1271.
  • Yaldız O, Ertekin C. 2001. Thin layer solar drying of some vegetables. Drying Technology, 19:583-596.
  • Karathanos VT. 1999. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39:337-344.
  • Verma LR, Bucklin RA, Ednan JB, Wratten FT. 1985. Effects of drying air parameters on rice drying models. Transactions of American Society of Agricultural Engineers, 28:296-301.
  • Midilli A, Kucuk H, Yapar ZA. 2002. New model for single-layer drying. Drying Technology, 20(7):1503-1513.
  • Toğrul İT, Pehlivan D. 2004. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65:413-425.