SUCUKTAN İZOLE EDİLEN KOAGÜLAZ-NEGATİF

-

STAPHYLOCOCCUS VE MACROCOCCUS CASEOLYTICUS

The aim of this study was to investigate the presence of enterotoxin structural genes in 51 coagulasenegative Staphylococcus (CNS) and 10 Macrococcus caseolyticus strains isolated from traditionalfermented Turkish sausages (sucuk) produced without using starter culture. For this purpose, thepresence of 18 enterotoxin structural genes (sea, seb, sec, sed, see, seg, she, sei, selj, selk, sell, selm, seln,selo, selp, selq, selr and tst1) were researched by polymerase chain reaction (PCR) in a total of 61 isolatesfrom sucuk. The PCR results indicated that none of the isolates has contained enterotoxin structural gene.The results of this study showed that CNS and M. caseolyticus strains isolated from sucuk were safe interms of enterotoxin production

___

  • Kaban G. 2010. Volatile compounds of traditional Turkish dry fermented sausage (sucuk). Int J Food Prop, 13: 525–534.
  • Ercoflkun H, Özkal SG. 2011. Kinetics of traditional Turkish sausage quality aspects during fermentation. Food Control, 22: 165-172.
  • Kaban G. 2013. Sucuk and pastırma: microbiological changes and formation of volatile compounds. Meat Sci, 95: 912-918.
  • Talon R, Leroy S. 2011. Diversity and safety hazards of bacteria involved in meat fermentations. Meat Sci, 89: 303-309.
  • Mauriello G, Casaburi A, Blainotta G, Villani F. 2004. Isolation and technological properties of coagulase-negative staphylococci from fermented sausages of Southern Italy. Meat Sci, 67: 149-158. 6. Kaban G, Kaya M. 2008. Identification of lactic acid bacteria and Gram-positive catalase-positive cocci isolated from naturally fermented sausage (sucuk). J Food Sci, 73: 385-388.
  • Kozacinski L, Drosinos E, Caklovica F, Cocolin L, Gasparik-Reichhardt J, Veskovic S. 2008. Investigation of microbial association of traditionally fermented sausages. Food Technol Biotechnol, 46: 93-106.
  • Resch M, Nagel V, Hertel C. 2008. Antibiotic resistance of coagulase-negative staphylococci associated with food and used in starter cultures. Int J Food Microbiol, 127: 99-104.
  • Bonomo MG, Ricciardi A, Zotta T, Sico MA, Salzano G. 2009. Technological and safety characterization of coagulase-negative staphylococci from traditionally fermented sausages of Basilicata region (Southern Italy). Meat Sci, 83: 15-23.
  • Coton E, Desmonts M-H, Leroy S, Coton M, Jamet E, Christieans S, Donnio P-Y, Lebert I, Talon R. 2010. Biodiversity of coagulase-negative staphylococci in French cheeses, dry fermented sausages, processing environments and clinical samples. Int J Food Microbiol, 137: 221-229.
  • Marty E, Bodenmann C, Buchs J, Hadorn R, Eugster-Meier E, Lacroix C, Meile L, 2012a. Prevalence of antibiotic resistance in coagulase- negative Staphylococcus from spontaneously fermented meat products and safety assesment for new starters. Int J Food Microbiol, 159: 74-83. 12. Marty E, Buchs J, Eugster-Meier E, Lacroix C, Meile, L. 2012b. Identification of staphylococci and dominant lactic acid bacteria in spontaneously fermented Swiss meat products using PCR-RFLP. Food Microbiol, 29: 157-166.
  • Cachaldora A, Fonseca S, Franco I, Carballo J. 2013. Technological and safety characterization of Staphylococcaceae isolated from Spanish traditional dry-cured sausages. Food Microbiol, 33: 61-68.
  • Landeta G, Curiel JA, Carrascosa AV, Munoz R, De Las Rivas B. 2013. Characterization of coagulase-negative staphylococci isolated from Spanish dry cured meat products. Meat Sci, 93: 387-396.
  • Zdolec N, Dobranic V, Zdolec G, Duricic D. 2013. Antimicrobial resistance of coagulase-negative staphylococci and lactic acid bacteria from industrially produced dairy products. Mljekarstvo, 63: 30-35.
  • Kesmen Z, Yarimcam B, Aslan H, Yetim H. 2014. Application of different molecular techniques for characterization of catalase-positive cocci isolated from sucuk. J Food Sci, 79: 222-228.
  • Lacumin L, Manzano M, Comi G. 2012. Catalase-positive cocci in fermented sausage: variability due to different pork breeds, breeding systems and sausage production technology. Food Microbiol, 29: 178-186.
  • Busconi M, Zacconi C, Scolari G. 2014. Bacterial ecology of PDO Coppa and Pancetta Piacentina at the end of ripening and after MAP storage of sliced product. Int J Food Microbiol, 172: 13-20.
  • Hammes WP, Knauf HJ. 1994. Starters in the processing of meat products. Meat Sci, 36: 155-168.
  • Rantsiou K, Cocolin L. 2006. New developments in the study of the microbiota of naturally fermented sausages determined by moleculer methods: a rewiew. Int J Food Microbiol, 39: 123-128.
  • Carmo LSD, Cummings C, Linardi VR, Dias RS, Souza JMD, Sena MJD, Santos DAD, Shupp JW, Pereira SRK, Jett M. 2004. A case study of masive staphylococcal food poisoning incident. Foodborne Pathog Dis, 1: 241-246.
  • Veras JF, Carmo LS, Tong LC, Shupp JW, Cummings C, Santos DA, Cerqueira MMOP, Cantini A, Nicoli JR, Jett M. 2008. A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais Brazil. Int J Infect Dis, 12: 410-415.
  • Zell C, Resch M, Rosenstein R, Albrecht T, Hertel C, Götz F. 2008. Characterization of toxin production of coagulase-negative staphylococci isolated from food and starter cultures. Int J Food Microbiol, 127: 246-251.
  • Argudin MA, Mendoza MC, Rodicio MR. 2010. Food poisoning and Staphylococcus aureus enterotoxins. Toxins, 2: 1751-1773.
  • Genifl B. 2015. Fermente sucuktan izole edilen koagülaz-negatif Staphylococcus ve Macrococcus caseolyticussufllarının antibiyotik duyarlılıklarının ve dekarboksilasyon aktivitelerinin belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Isparta, Türkiye, 74 s.
  • Cancilla MR, Powell IB, Hillier AJ, Davidson BE. 1992. Rapid genomic fingerprinting of Lactococcus lactisstrains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol, 58: 1772-1775.
  • Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K. 2005. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureusisolates. FEMS Microbiol Lett, 246: 191-198. 28. Erol İ, İfleri Ö. 2004. Stafilokokal enterotoksinler. Ankara Üniv Vet Fak Derg, 51: 239-245.
  • Rosec JP, Gigaud O, Dalet C, Richard N. 1997. Enterotoxin production by staphylococci from foods in France. Int J Food Microbiol, 35: 213-221.
  • Blaiotta G, Pennacchia C, Villani F, Ricciardi A, Tofalo R, Parente E. 2004. Diversity and dynamics of communities of coagulase-negative staphylococci in traditional fermented sausages. J Appl Microbiol, 97: 271-284.
  • Even S, Leroy S, Charlier C, Zakour NB, Chacornac JP, Lebert I, Jamet E, Desmonts MH, Coton E, Pochet S, Donnio PY, Gautier M, Talon R, Leloir Y. 2010. Low occurrence of safety hazards in coagulase-negative staphylococci isolated from fermented foodstuffs. Int J Food Microbiol, 139: 87-95.
  • Seitter M, Nerz C, Rosenstein R, Götz F, Hertel C. 2011. DNA microarray based detection of genes involved in safety and technologically relevant proporties of food associated coagulase-negative staphylococci. Int J Food Microbiol, 145: 449-458. 33. Dobranic V, Zdolec N, Racic I, Vujnovic A, Zdelar-Tuk M, Filipovi I, Grgurevi N, Spicic S. 2013. Determination of enterotoxin genes in coagulase-negative staphylococci from autochthonous Croatian fermented sausages. Vet Archiv, 83: 145-152.
  • Vernozy-Rozand C, Mazuy C, Prevost G, Lapeyre C, Bes M, Brun Y, Fleurette J. 1996. Enterotoxin production by coagulase-negative staphylococci isolated from goats' milk and che- ese. Int J Food Microbiol, 30: 271-280.
  • Rodriguez M, Nunez F, Córdoba JJ, Bermudez E, Asensio MA. 1996. Gram positive catalase- positive cocci from dry cured Iberian ham and their enterotoxigenic potential. Appl Environ Mic- robiol, 62: 1897-1902.
  • Udo EE, Al-Bustan MA, Jacob LE, Chugh TD. 1999. Enterotoxin production by coagulase-negative staphylococci in restaurant workers from Kuwait city may be a potential cause of food poisoning. J Med Microbiol, 48: 819-823.
  • Cunha MLRS, Peresi E, Calsolari RAO, Jşnior JPA. 2006. Detection on enterotoxins genes in co- agulase-negative staphylococci isolated from fo- ods. Braz J Microbiol, 37: 70-74.
  • Rall VLM, Sforcin JM, Augustini VCM, Wa- tanabe MT, Fernandes AJ, Rall R, Silva MG, Jşnior JPA. 2010. Detection of enterotoxin genes of Staphylococcus sp. isolated from nasal cavities and hands of food handlers. Braz J Microbiol, 40: 1067-1073.
  • Guimarães FF, Nóbrega DB, Richini-Pereira VB, Marson PM, Pantoja JCF, Langoni H. 2013. Enterotoxin genes in coagulase-negative and coagulase-positive staphylococci isolated from bovine milk. J Dairy Sci, 96: 2866-2872.
  • Piechota M, Kot B, Zdunek E, Mitrus J, Wicha J, Wolska MK, Sachanowicz K. 2014. Distribution of classical enterotoxin genes in staphylococci from milk of cows with- and without mastitis and the cowshed environment. Pol J Vet Sci, 17: 407-411. 41. Aye R, Gautam A, Reyaz A, Vinson H, Gibbs PS, Barigye R. 2014. Evaluation of selected toxigenic genes and antimicrobial agent susceptibility in Staphylococcusspp. isolated from foods purchased from North Dakota grocery stores. J Food Nutr Disor, 3(3): 1-5.
  • Bertelloni F, Fratini F, Ebani VV, Galiero A, Turchi B, Cerri D. 2015. Detection of genes encoding for enterotoxins, TSST-1 and biofilm production in coagulase-negative staphylococci from bovine bulk tank milk. Dairy Sci & Technol, 95: 341-352.