KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ

Elektroeğirme, yüksek yüzey alanı/hacim oranına sahip farklı boyutlarda liflerin üretimi için yenilikçi bir yöntemdir. Bu çalışmanın amacı, nane uçucu yağı yüklü ve kitin lifleri/kitin mikro kristalleri ile güçlendirilmiş zein bazlı nanobiyokompozit malzemelerin elektroeğirme yöntemi ile üretilmesidir. Üretilen nanobiyokompozitlerin yüzey morfolojisi, mekanik özellikleri ve antimikrobiyal aktiviteleri belirlenmiştir. Polimer çözeltisine kitin liflerinin eklenmesi ile ortalama lif çapı artmıştır. Kitin mikro kristalleri içeren malzemelerin mekanik özelliklerinin, kitin lifi içeren malzemelere göre daha zayıf mekanik özelliklere sahip olduğu bulunmuştur. Kitin lifleri ve nane uçucu yağı içeren malzemeler test mikroorganizmaları üzerinde berrak zon oluşturmamıştır. Fakat kitin mikro kristalleri ile birlikte nane uçucu yağı içeren malzemeler, Staphylococcus aureus üzerinde Escherichia coli’den daha etkili olmuştur. Üretilen nanobiyokompozit malzemelerin potansiyel aktif ambalajlama sistemlerinin geliştirilmesinde kullanılabileceği düşünülmektedir.

INVESTIGATION OF ELECTROSPUN NANOFIBERS STRENGTHENED WITH CHITIN AS ACTIVE PACKAGING MATERIAL

Electrospinning is an innovative method for the production of fibers with different sizes having a high surface area/volume ratio. The aim of this study was to produce zein based nanobiocomposite active packaging materials loaded with mint essential oil and strengthened by chitin fibers/chitin microcrystals using electrospinning. Surface morphologies, mechanical properties and antimicrobial activities of the produced nanobiocomposites were determined. The average fiber diameter increased with the addition of chitin fibers into polymer solution. It was found that the mechanical properties of materials containing chitin microcrystals were weaker than the materials containing chitin fibers. The composite materials containing chitin fibers and mint essential oil did not form a clear zone on the test microorganisms. However, materials containing chitin microcrystals with mint essential oil were more effective on Staphylococcus aureus than Escherichia coli. It is considered that nanobiocomposites produced can be used in the development of potential active packaging systems.

___

  • Aydoğdu, A., Sumnu, G., Sahin, S. (2019). Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym 208: 241–250.
  • Barrosa, A., Moraisa, S.M., Ferreiraa, P.A.T., Vieirab, I.G.P., Craveiroc, A.A., Fontenelled, R., Jane Menezesa, E., Silvaa, F., Sousa, H. (2015). Chemical composition and functional properties of essential oils from Mentha species. Ind Crops Prod 76: 557-564.
  • Dursun, S., Erkan, N., Yeşiltaş, M. (2010). Doğal biyopolimer bazlı (biyobozunur) nanokompozit filmler ve su ürünlerindeki uygulamaları. J Fisheries Sci 4: 50-77.
  • Evren, M. ve Tekgüler, B. (2011). Uçucu yağların antimikrobiyal özellikleri, Elektronik Mikrobiyol Derg 9: 28-40.
  • Junkasem, J., Rujiravanit, R., ve Supaphol, P. (2006). Fabrication Of α-Chitin Whisker-Reinforced Poly(Vinyl Alcohol) Nanocomposite Nanofibres By Electrospinning. Nanotechnol 17:4519-4528.
  • Kara, H., Xiao, H., Sarker, M., Jin, T., Sousa, A., Liu, C., Tomasulu, P.M. (2016). Antivacterial poly (lactic acid) (PLA) film grafted with electrospun pla/allyl isothiocyanete fibers for food packacing. J Appl Polym Sci 10: 1-8.
  • Lan, W., Liang, X., Lan, W., Ahmed, S., Liu, Y., Qin, W. (2019). Electrospun polyvinyl alcohol/d-limonene fibers prepared by ultrasonic processing for antibacterial active packaging material. Molecules 24: 767.
  • Liakos I, Abdellatif, M., Innocenti, C., Scarpellini, A., Carzino, R., Brunetti, V., Marras, S., Brescia, R., Drago, F., Pompa, P. (2016). Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules. Molecules 21: 520, doi:10.3390/molecules21040520.
  • Liakos, I., Holban, A., Carzino, R., Lauciello, S., Grumezescu, A. (2017). Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity. Nanomater 7:84, doi:10.3390/nano7040084.
  • Liakosa, I., Rizzello, L., Scurr, D., Pompa, P., Bayer, I., Athanassiou, A. (2013). All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm, doi:10.1016/j.ijpharm.2013.10.046.
  • Liu, H., Liu, W., Luo, B., Wen, W., Liu, M., Wang, X. (2016). Electrospun composite nanofiber membrane of poly(l-lactide) andsurface grafted chitin whiskers: Fabrication, mechanical propertiesand cytocompatibility. Carbohydr Polym 147: 216–225.
  • Mincea, M., Negrulescu, A., Ostafe, V. (2012). Preparation, modification and applications of chitin nanowhiskers: A Rev Adv Mater Sci 30: 225-242.
  • Paillet, M. ve Dufresne, A. (2001). Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34: 6527-6530.
  • Pereira de Abreu, D. A., J. M. Cruz, P. P. Losada. (2012). Active and intelligent packaging for the food industry. Food Rev Int 28: 146–187.
  • Realini, E.C. ve Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Sci 98: 404–419.
  • Rieger, K., Schiffman, J. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances theantimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113: 561–568.
  • Schmatz, D., Costa, J., Greque de Morais, M. (2019). A novel nanocomposite for food packaging developed by electrospinning and electrospraying. Food Packaging Shelf Life 20-100314.
  • Silva de Farias, B., Junior, T., Pinto, L. (2019). Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. Int J Biol Macromol 123: 210–220.
  • Tiryakioğlu, B. (2004). Euphorbia seguieriana bitkisinden hazırlanan özütlerin antibakteriyel etkilerinin incelenmesi, Çanakkale On Sekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Çanakkale, Türkiye.
  • Torres-Giner, S. (2011). Electrospun nanofibers for food packaging applications. Multifunctional Nanoreinforced Polym Food Packaging 108-125, doi.org/10.1533/9780857092786.1.108
  • Vermeiren, L., Devlieghere, F., Beest, VM., Kruijf, N., De¬bevere, J. (1999). Developments in the active packaging of foods. Trends Food Sci Technol 10(3): 77-86.
  • Wen, P., Zhu, D., Feng, K., Liu, F., Lou, W., Li, N., Zong, M., Wu, H. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 196: 996-1004.
  • Wen, Q., Lan, W., Zhang, R., Whang, S., Liu, Y. (2017). Development of poly(lactic acid)/chitosan fibers loaded with essential oil for antimicrobial applications. Nanomaterials 7: 194-207.
  • Zeng, J-B., He, Y., Li, S., Wang Y. (2012). Chitin Whiskers: An overview. Biomacromolecules 13: 1−11.
  • Zhang, Ll., Yongshang, L,, and Weng, L. (2004). Morphology and properties of soy protein ısolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5: 1046-1051.
  • Zivanovic, S., Li, J., Davidson, P. M., Ki, K. (2007). Physical, mechanical, and antibacterial properties of chitosan/peo blend films. Biomacromolecules 47: 1505-1510.
  • Yang, Z., Li, X., Si, J., Cui, Z., & Peng, K. (2019). Morphological, Mechanical and Thermal Properties of Poly (lactic acid)(PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. J Wuhan Univ Technol Mater Sci Ed 34(1), 207-215.
  • Zhang, W., Huang, C., Kusmartseva, O., Thomas, N. L., & Mele, E. (2017). Electrospinning of polylactic acid fibres containing tea tree and manuka oil. Reactive Functional Polym 117, 106-111.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR