Biyofilmler: Yüzeylerdeki Mikrobiyal Yaşam

Eksopolisakkarit matriks içinde sıvı bir yüzeye tutunan mikroorganizma topluluğundan oluşan biyofilmler gıda endüstrisi için ciddi problemlere neden olmaktadır. Hücre dışı polimerik matriks, biyofilmlerin önemli yapısal öğesidir. Polisakkarit, protein, DNA ve sudan oluşan hücre dışı matriks, biyofilm hücrelerinin tutunmasını sağlar. Matriksin en önemli fonksiyonlarından birisi UV radyasyon, farklı pH koşulları, ozmotik basınç, su kaybı, antibiyotik gibi birçok faktöre karşı bakteriyi korumaktır. Bu makalede, gıda sanayisini ilgilendiren en önemli sorunlardan biri olduğu için, biyofilm oluşumu, yapısı ve önlenmesi hakkında bilgiler derlenmiştir. Eksopolisakkarit matriks içinde sıvı bir yüzeye tutunan mikroorganizma topluluğundan oluşan biyofilmler gıda endüstrisi için ciddi problemlere neden olmaktadır. Hücre dışı polimerik matriks, biyofilmlerin önemli yapısal öğesidir. Polisakkarit, protein, DNA ve sudan oluşan hücre dışı matriks, biyofilm hücrelerinin tutunmasını sağlar. Matriksin en önemli fonksiyonlarından birisi UV radyasyon, farklı pH koşulları, ozmotik basınç, su kaybı, antibiyotik gibi birçok faktöre karşı bakteriyi korumaktır. Bu makalede, gıda sanayisini ilgilendiren en önemli sorunlardan biri olduğu için, biyofilm oluşumu, yapısı ve önlenmesi hakkında bilgiler derlenmiştir.

Biofilms: Microbial Life on Surfaces (Turkish with English Abstract)

A biofilm is a community of microorganisms encased within an exopolysaccharide matrix attached to a surface and causes serious problems for food industry. The extracellular polymeric matrix is an important structural component of biofilms. The matrix, which is composed of polysaccharides, proteins, nucleic acids and water, enables the biofilms to attach to the surfaces. One of the most important functions of the matrix is to protect the bacteria from various stress factors such as UV radiation, extreme pH values, osmotic pressure, dehydration and antibiotics. This study presents a review of the information about formation, structure and prevention of biofilms since they are one of the most important problems in food industry.

___

  • Leone S, Molinaro A, Alfieri F, Cafaro V, Lanzetta R, Donato A, Parrilli M. 2006. The biofilm matrix of Pseu- domonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides. Carbohydr Res, 341: 2456 – 2461.
  • Fujishige NA, Kapadia NN, Hirsch AM. 2006. A fee- ling for the microorganism: structure on a small scale. Biofilms on plant roots. Bot J Linnean Soc, 150 (1): 79- 88.
  • Poulsen LV. 1999. Microbial biofilm in food proces- sing. Lebensm. Wiss. u. Techn., 32 (6): 321-326.
  • Donlan RM, Costerton JW. 2002. Biofilms : Survival mechanism of clinically relevant microorganisms. Clini- cal Microbiol, 15 (2): 167-193.
  • Hallam NB, West, JR, Forster, CF, Simms J. 2001. The potential for biofilm growth in water distribution systems Wat Res, 35: 4063-4071
  • Kumar CG, Anand SK. 1998. Significance of microbial biofilms in food industry: a review. Int J Food Microbiol, 42: 9–27.
  • Jayaraman A, Cheng ET, Earthman JC, Wood TK. 1997. Importance of biofilm formation for corrosion in- hibition of SAE 1018 steel by axenic aerobic biofilms. J Ind Microbiol Biotechnol, 18: 396–401.
  • Çiftçi Z. 2005. Kronik tonsillitte biofilmin rolü, T.C. Taksim Eğitim ve Araştırma Hastanesi KBB Kliniği, Uz- manlık Tezi, 69 sayfa, Basılmamıştır
  • Arnold JW, Silvers S, 2000. Comparison of poultry processing equipment surfaces for susceptibility to bac- terial attachment and biofilm formation, Poul Sci, 79: 1215-1221.
  • Lindsay D, Brözel VS, Mostert JF, Von Holy A. 2002. Differential efficacy of a chlorine dioxide-containing sanitizer against single species and binary biofilms of a dairy-associated Bacillus cereus and a Pseudomonas flu- orescens isolate J Appl Microbiol 92: 352 – 361.
  • Allison DG. 2003.The biyofilm matrix. Biofouling, 19 (2): 139-150.
  • Padera RF. 2006. Infection in ventricular assist devi- ces: the role of biofilm. Cardiovasc Pathol 15: 264– 270. 13. Kives J, Orgaz B, SanJos´e C. 2006. Polysaccharide differences between planktonic and biofilm-associated EPS from Pseudomonas fluorescens B52. Colloids Surfa- ces B, 52: 123–127.
  • Hussain M, Wilcox MH, White PJ. 1993. The slime of coagulase negative Staphylococci: biochemistry and relation to adherence. FEMS Microbiol.10: 191-207.
  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol. 49: 711-745.
  • Lasa I, Penadés JR. 2006. Bap: A family of surface proteins involved in biofilm formation. Res Microbiol 157: 99–107.
  • Tormo MA, Knecht E, Götz F, Lasa I, Penade´s JR. 2005. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151: 2465–2475.
  • Latasa C, Solano C, Penadés JR., Lasa I. 2006.Biofilm- associated proteins. C. R. Biologies 329; 849–857.
  • O’Toole G, Kaplan HB, Kolter R. 2000. Biofilm for- mation as microbial development. Annu. Rev. Microbiol. 54: 49-79.
  • Kolter R, Tormo A. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47: 855 – 874.
  • Lindsay D, Von Holy A. 2006. Bacterial biofilms wit- hin the clinical setting: what healthcare professionals should know. J Hosp Infect, 1-13.
  • Mafu AS, Roy D, Goulet J. 1990. Magny P. Attach- ment of Listeria monocytogenes to stainless steel, glass, polypropylene and rubber surfaces after short contact times. J Food Prot 53: 742 - 746.
  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW. 1994. Influence of plumbing materials on biofilm forma- tion and growth of Legionella pneumophila in potable water systems. Appl Environ Microbiol 60:1842-1851.
  • Barnes LM, Lo MF, Adams MR, Chamberlain AHL. 1999. Effect of Milk Proteins on Adhesion of Bacteria to Stainless Steel Surfaces. Appl Environ Microbiol, 65 (10): 4543-4548.
  • Trachoo N. 2003. Biofilms and the food industry. Songklanakarin J. Sci. Technol., 25 (6): 807-815.
  • Kim H, Ryu JH, Beuchat LR. 2006. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl Environ Microbiol, 72 (9): 846–5856.
  • Planchon S, Gaillard-Martinie B, Dordet-Frisoni E, Bellon-Fontaine MN, Leroy S, Labadie J, Hébraud M, Talon R. 2006. Formation of biofilm by Staphylococcus xylosus Int J Food Microbiol. 109: 88–96.
  • Wong ACL. 1998. Biofilms in food processing envi- ronments. J Dairy Sci, 81: 2765–2770.
  • Gündüz GT, Tuncel G. 2006. Biofilm formation in an ice cream plant. Antonie Van Leeuwenhoek. 89 (3-4): 329-336.
  • Camara M. 2007. Quorum sensing: A cell-cell signal- ling mechanism used to coordinate behavioural changes in bacterial populations http://wmc7.liacs.nl/procee- dings/WMC7Camara.pdf (Erişim tarihi 24.08.2007)
  • March JC, Bentley WE. 2004. Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotech- nol, 15: 495–502.
  • Novick RP, Muir WM. 1999. Virulence gene regu
  • lation by peptides in staphylococci and other Gram
  • positive bacteria.Curr Opin Microbiol, 2: 40-45.
  • Donabedian H. 2003. Quorum sensing and its rele- vance to infectious diseases. J Infect; 46: 207-214.
  • Raffa RB, Iannuzzo JR, Levine DR, 2005. Bacterial communication (“Quorum Sensing”) via ligands and re- ceptors: a novel pharmacologic target for the design of antibiotic drugs. J Pharmacol Exp Ther, 312: 417-423.
  • Ahmer BMM. 2004. Cell-to-cell signalling in Esche- richia coli and Salmonella enterica. Mol Microbiol, 52: 933-945.
  • Hsueh YH, Somers EB, Lereclus D, Wong AMC. 2006. Biofilm Formation by Bacillus cereus Is Influenced by PlcR, a Pleiotropic Regulator. Appl Environ Microbiol, 72 (7): 5089–5092.
  • Meyer B. 2003. Approaches to preventetion, removel and killing of biofilms. Int. Biodeterioration Biodegrad, 51: 249 – 253.
  • Cloete TE. 2003. Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterioration Bio- degrad 51: 277 – 282.
  • Mittelman MW. 1998. Structure and Functional Characteristics of Bacterial Biofilms in Fluid Processing Operations. J Dairy Sci, 81: 2760–2764.
  • Niemira AB, Solomon EB. 2005. Sensitivity of Plank- tonic and Biofilm-Associated Salmonella spp. to Ioni- zing Radiation. Appl Environ Microbiol, 71: 2732–2736. 41. Nel HA, Bauer R, Wolfaardt GM, Dicks LMT. 2002. Effect of bacteriocins Pediocin PD-1, Plantaricin 423, and Nisin on biofilms of Oenococcus oeni on a stainless steel surface. American Society for Enology and Viticul- ture. 53(3):191-196.
  • Stewart PS, Roe F, Reyner J. 2000. Effect of catalase on H2O2 penetration into P. aeruginosa biofilms. Appl Environ Microbiol. 66: 836-838.
  • He P, Li N, Li S. 2001. A study on beta lactamase activity of biofilm E. coli. Zhonghae Jie He He Hu Xi Za Zhei, 24: 537 – 538.
  • Davis VC, Wagle N, Anderson MD, Warren MM. 1991. Bacterial and fungal killing by lontophoresis with Long-Lived Electrodes. Antimicrob Agents Chemother, 35 (10): 2131-2134.
  • Wellman N, Fortun SM, McLeod BR. 1996. Bacterial biofilms and the bioelectric effect. American Society for Microbiology 40 (9): 2012–2014.
  • Blenkinsopp SA, Khoury AE, Costerton JW.1992. Electrical Enhancement of Biocide Efficacy against Pse- udomonas aeruginosa Biofilms. Appl Environ Microbiol, 58 (11): 3770-3773.
  • Jang A, Szabo J, Hosni AA, Coughlin M, Bishop PL. 2006. Measurement of chlorine dioxide penetration in dairy process pipe biofilms during disinfection. Appl Microbiol Biotechnol 72: 368–376.
  • Barnes RL. and Caskey DK. 2002. Using ozone in the prevention of bacterial biofilm formation and scaling, Water Conditioning&Purification, http://www.prozone- int.com/pdf/biofilms.pdf (Erişim tarihi 25.11.2007)