Bitkisel Ürünlerin Atıklarından Antioksidan Maddelerin Ultrason Destekli Ekstraksiyonu

Dünyada her yıl ortalama 200 milyon ton organik atık üretilmektedir (FAOSTAT). Bu atıkların çoğu doğrudan tabiata bırakılmakta veya hiçbir işlem yapılmaksızın yakıt, hayvan yemi ya da gübre olarak kullanılmaktadır. Çevresel faktörler ve ekonomik nedenlerle son yıllarda bu atıkların değerlendirilmesi yönündeki çalışmalar giderek artmakta; enerji ve hammaddenin korunması açısından yeni uygulamalara gereksinim duyulmaktadır. Bitkisel ürünlerden elde edilen ekstraktlar; yağlar, fitokimyasallar, biyoaktif bileşikler, aromatik maddeler ve renk maddeleri içerirler. Bitki ekstraktlarından gıda, eczacılık ve kozmetik endüstrisinde yararlanılmaktadır. Geleneksel metodlarla ekstraksiyon çok uzun zaman almakta ve çok büyük miktarlarda çözücüye ihtiyaç duyulmaktadır (1). Polifenoller kolayca okside olabilme özelliği nedeniyle antioksidan aktiviteye sahiptirler. Oksidasyon, gıda ürünlerinde besin değerinin ve raf ömrünün azalmasına yol açar. Doğal kaynaklı antioksidanlar gıda endüstrisinde koruyucu madde olarak kullanılmakla birlikte; insan sağlığı üzerindeki olumlu etkileri nedeniyle de önemlidirler. Antioksidan maddelerin ekstraksiyonu genellikle çözücü karışımları kullanılarak yapılır. Ultrason destekli sistemlerin ekstraksiyonda kullanımı konusundaki çalışmalar son yıllarda giderek artmaktadır. Bu makalede ultrason destekli ekstraksiyon sistemlerinin bazı uygulamalarıyla ilgili olarak yapılan çalışmaların derlemesi verilmektedir.Dünyada her yıl ortalama 200 milyon ton organik atık üretilmektedir (FAOSTAT). Bu atıkların çoğu doğrudan tabiata bırakılmakta veya hiçbir işlem yapılmaksızın yakıt, hayvan yemi ya da gübre olarak kullanılmaktadır. Çevresel faktörler ve ekonomik nedenlerle son yıllarda bu atıkların değerlendirilmesi yönündeki çalışmalar giderek artmakta; enerji ve hammaddenin korunması açısından yeni uygulamalara gereksinim duyulmaktadır.Bitkisel ürünlerden elde edilen ekstraktlar; yağlar, fitokimyasallar, biyoaktif bileşikler, aromatik maddeler ve renk maddeleri içerirler. Bitki ekstraktlarından gıda, eczacılık ve kozmetik endüstrisinde yararlanılmaktadır. Geleneksel metodlarla ekstraksiyon çok uzun zaman almakta ve çok büyük miktarlarda çözücüye ihtiyaç duyulmaktadır (1). Polifenoller kolayca okside olabilme özelliği nedeniyle antioksidan aktiviteye sahiptirler. Oksidasyon, gıda ürünlerinde besin değerinin ve raf ömrünün azalmasına yol açar. Doğal kaynaklı antioksidanlar gıda endüstrisinde koruyucu madde olarak kullanılmakla birlikte; insan sağlığı üzerindeki olumlu etkileri nedeniyle de önemlidirler. Antioksidan maddelerin ekstraksiyonu genellikle çözücü karışımları kullanılarak yapılır. Ultrason destekli sistemlerin ekstraksiyonda kullanımı konusundaki çalışmalar son yıllarda giderek artmaktadır. Bu makalede ultrason destekli ekstraksiyon sistemlerinin bazı uygulamalarıyla ilgili olarak yapılan çalışmaların derlemesi verilmektedir.

Ultrasound-Assisted Extraction of Antioxidant Materials from By-Products of Plant Food Processing (Turkish with English Abstract)

  Almost 200 million tons of organic wastes are generated in the world (FAOSTAT). As in the past these wastes often have been dumped without any treatment or used as fuel, animal feed or fertilizer. Recently, new methods and policies for waste treatment have been introduced. This may be due to the increasing necessity for prevention of environmental pollution as well as for economical reasons and the need to conserve energy and raw materials. Plants extracts contain compounds such as lipids, phytochemicals, bioactive compounds, flavors, pharmaceutics, fragrances and pigments. They are widely used in the food, pharmaceutical and cosmetics industries. Traditional methods, which have been used for many decades, are very time consuming and require relatively large quantities of solvents (1). Polyphenols have antioxidant activity because of their easily oxidizing characteristics. Oxidization with being one of the main reactions for the degradation of oils also cause decreased self life and nutritive value of foods. There is an increasing demand for new extraction techniques. The purpose of this review is to highlight the potential applications of ultrasound assisted extraction techniques using by-products as a source of functional compounds.

___

  • (1) Castro L, Garcia L. 2003. Ultrasound: a powerful tool for leaching. Trends in Analytical Chemistry, 22(1): 41–47.
  • (2) Heinonen IM. 2002. Antioxidants in fruits, berries and vegetables. In: Fruit and Vegetable Processing – Improving Quality, W. Jongen (ed), CRC Press, USA, pp.23- 44
  • (3) Maslarova NVY. 2001. Inhibiting oxidation. In: Antioxidants in Food, J Pokorny, N. Yanishlieva and M. Gordon (eds), CRC Press, USA, pp. 7-20.
  • (4) Perez-Serradilla JA, Capote PF, Castro LMD, 2007. Simultaneous utrasound-asisted emulsification-extraction of polar and nonpolar compounds from solid plant samples. Analytical Chemistry, 79: 6767-6774.
  • (5) Wang L, Weller CL. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17: 300-312.
  • (6) Souquet JM, Cheynier V, Brossaud F, Moutounet M. 1996. Polymeric proanthocyanidins from grape skins. Phytochemistry, 43: 509–512.
  • (7) Torres JL, Bobet R. 2001. New flavanol derivatives from grape (Vitis vinifera) by products, antioxidant aminoethylthio-flavan-3-ol conjugates from a polymeric waste fraction used as a source of flavanols. Journal of Agricultural and Food Chemistry, 49: 4627–4634.
  • (8) Larrauri JA, Ruperez P, Saura-Calixto F. 1997. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45: 1390–1393.
  • (9) Larrauri JA, Sanchez-Moreno C, Saura-Calixto F. 1998. Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. Journal of Agricultural and Food Chemistry, 46: 2694–2697.
  • (10) Karadeniz F, Durst RW, Wrolstad RE. 2000. Polyphenolic composition of raisins. Journal of Agricultural and Food Chemistry, 48:5343-5350.
  • (11) Makris DP, Boskou G, Andrikopoulos NK. 2007. Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresource Technology, 98: 2963-2967.
  • (12) Otto K, Sulc D. 2001. Herstellung von Gemüsesaften. In: Frucht- und Gemüsesafte, U. Schobinger (ed.) , Ulmer, Stuttgart, pp. 278-297.
  • (13) Avelino A, Avelino H T, Roseiro JC, Collaco MTA. 1997. Saccharification of tomato pomace for the production of biomass. Bioresource Technology, 61: 159–162.
  • (14) Sharma SK, Maguer ML. 1996. Lycopene in tomatoes and tomato pulp fractions. Italian Journal of Food Science, 2: 107–113.
  • (15) Baysal T, Ersus S, Starmans DAJ. 2000. Supercritical carbondioxide extraction of beta-carotene and lycopene from tomato paste waste. Journal of Agricultural and Food Chemistry, 48: 5507-5511.
  • (16) Peschel W, Sanchez-Rabaneda F, Diekmann W, Plescher A, Gartzia I, Jimenez D, Lamuela-Raventos R, Buxaderas S, Codina C., 2006. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chemistry, 97: 137–150.
  • (17) Vitolo S, Petarca L, Bresci B. 1999. Treatment of olive oil industry wastes. Bioresource Technology, 67:129- 137.
  • (18) Gasparrini R. 1999. Treatment of olive oil processing residues. Oils & Fats International, 15 (1): 32- 33.
  • (19) Visioli F, Galli C, Bornet F, Mattei A, Patelli R, Galli G, Caruso D. 2000. Olive oil phenolics are dosedependently absorbed in humans. FEBS Letters, 468: 159–160.
  • (20) Laufenberg G, Kunz B M. 2003. Nystroem: Transformation of vegetable waste into value added products: a) the upgrading concept b) practical implementations. Bioresource Technology, 87(2): 167-198.
  • (21) Laufenberg G. 2001. Adding value to vegetable waste - Synergy of new utilisation routes and latest processing technology. Eurocaft 2001, European conference on Advanced Technology for Safe and High Quality Foods, 5-7 December, Berlin, Germany.
  • (22) Jun X. 2006. Application of high hydrostatic pressure processing of food to extracting lycopene from tomato paste waste. High Pressure Research, 26(1): 33–41.
  • (23) Brennan J G. 2006. Food Processing Handbook. Wiley VCH Germany, 582 p.
  • (24) Mason TJ, Lorimer JP. 2002. Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH Weeinheim, 303p.
  • (25) Neduzhii SA. 1962. Investigation of emulsification brought by sonic and ultrasonic oscillations. Soviet Physics-Acustics, 7: 221-235.
  • (26) Lauterborn W, Ohl CD. 1997. Cavitation bubble dynamics. Ultrasonics Sonochemistry, 4: 65-75.
  • (27) Liang H. 1993. Modeling of ultrasound assisted and osmotically induced diffusion in plant tissue. PhD Dissertation, Purdue University, Indiana, US.
  • (28) Mulet A, Carcel JA, Benedito J, Simal S., Rossello C. 1999. Ultrasonic mass transfer enhancement in food processing. In: Proceedings of 6th Conference of Food Engineering AIChE Annual Meeting, G. Barbosa-Canovas and SP Lombardo (eds.), pp. 74–85, Dallas.
  • (29) Pugin B, Turner AT. 1990. Influence of ultrasound on reaction with metals. In: Advances in Sonochemistry, Vol.1, TJ Mason (ed.), pp.81-118, JAI Pres, London.
  • (30) Borisov YY, Gynkina NM. 1973. Acoustic drying. In: Physical Principles of Ultrasonic Technology, Vol. 2, LD Rosenge (ed.), pp.381-474, Plenum Pres, New York.
  • (31) Mason TJ. 1998. Power ultrasound in food processing. The way forward. In: Ultrasound in Food Processing, MJW Povey and TJ Mason (eds), pp.105-126, Chapman & Hall, London.
  • (32) Mason TJ, Cordemans ED. 1996. Ultrasonic intensification of chemical processing and related operations: A review. Transactions of the Institute of Chemical Engineers, 74: 511–516.
  • (33) Leighton TG. 1998. The principles ofcavitation. In: Ultrasound in Food Processing, MJW Povey and TJ Mason (eds), pp.151-182, Chapman & Hall, London.
  • (34) Floros JD, Liang H. 1994. Acoustically assisted diffusion through membranes and biomaterials. Food Technology, December: 79–84.
  • (35) Vinatoru M, Toma M, Mason TJ. 1999. Ultrasoundassisted extraction of bioactive principles from plants and their constituents. In Advances in Sonochemistry, Mason TJ (ed), Volume 5, JAI Press, UK, pp. 209–248.
  • (36) Vinatoru M. 2001. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8: 303–313.
  • (37) Li H, Pordesimo L, Weiss J. 2004. High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37: 731–738.
  • (38) Wu J, Lin L, Chau F, 2001. Ultrasound-assisted extraction of gingseng saponins from gingseng roots and cultured gingseng cells. Ultrasonics Sonochemistry, 8: 347-352.
  • (39) Wang J, Sun B, Cao Y, Tian Y, Li X. 2008. Optimization of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106:804-810.
  • (40) Rodrigues S, Pinto GAS, Fernandes FAN. 2008. Optimization of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrasonics Sonochemistry, 15: 95-100.
  • (41) Rodrigues S, Pinto GAS. 2007. Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. Journal of Food Science and Chemistry, 80: 869-872.
  • (42) Priego-Capote F, Jimenez RJ, Leaque de Castro M D. 2004. Fast seperation and determination of phenolic compounds by capillary electrophores-diode array detection Application to the characterization of alperujo after ultrasound assisted extraction. Journal of Chromatography A, 1045 (1-2): 239-246.
  • (43) Albu S, Joyce E, Paniwnyk L, Lorimer JP, Mason TJ. 2004. Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry, 11: 261–265.
  • (44) Salisova M, Toma S, Mason TJ, 1997. Comparison of conventional and ultrasonically assisted extractions of pharmaceutically active compounds from Salvia officinalis. Ultrasonics Sonochemistry, 4: 131-134.
  • (45) Jacques R, Freitas LS, Peres V F, Dariva C, Oliveira JV, Caramao EB. 2007. The use of ultrasound in the extraction of Ilex paraguariensis leaves: A comparison with maceration. Ultrasonics Sonochemistry, 14: 6–12.
  • (46) Jacques R, Freitas LS, Peres VF, Dariva C, Oliveira JV, Caramao EB. 2006. Chemical composition of mate tea leaves (Ilex paraguariensis): A study of extraction methods. Journal of Seperation Science, 29: 2780 – 2784.
  • (47) Kim D, Jeong SW, Lee CY. 2003. Antioxidant capacity of phenolic phytochemicals various cultivars of plums. Food chemistry, 81: 321-326.
  • (48) Lujan JR, Luque-Rodrıguez JM, Luque de Castro MD. 2006. Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A, 1108: 76–82.
  • (49) Paniwnyk L, Beaufou E, Lorimer JP, Mason TJ. 2001. The extraction of rutin from flower buds of Sophora Japonica. Ultrasonics Sonochemistry, 8: 299-301.
  • (50) Mason TJ, Paniwnyk L, Lorymer JP. 1996. The uses of ultrasound in food technology. Ultrasonic Sonochemistry, 3: 253-260.
  • (51) Sharma A, Gupta MN. 2004. Oil extraction from almond, apricot and rice bran by three-phase partitioning after ultrasonication. European Journal Lipid Science and Technology, 106: 183–186
  • (52) Luque-García JL, Luque de Castro MD. 2004. Ultrasound-assisted Soxhlet extraction: an expeditive approach for solid sample treatment Application to the extraction of total fat from oleaginous seeds. Journal of Chromatography A, 1034 (1-2) :237-242.