Bakteriyel Selülozun Özellikleri ve Gıda Sanayisinde Kullanımı

Selüloz bitkilerde hücre duvarı yapısında bulunan ve endüstride yaygın olarak kullanılan bir polimerdir. Günümüzde selüloz esas olarak bitki kaynaklarından elde edilmektedir. Ancak son 30 yılda yapılan çalışmalar, selüloz üretebilen bakteriler üzerinde yoğunlaşmıştır. Bakteriyel selüloz daha saf olması, daha yüksek su tutma kapasitesine sahip olması, üretim sırasında meydana gelen değişimlere uygunluğu ve GRAS olarak kabul edilmesi gibi özellikleri ile bitkisel selülozdan ayrılmaktadır. Bu özellikleri nedeniyle bakteriyel selüloz gıda sanayisinde özellikle, düşük kalorili tatlı, cips ve şekerlemelerin üretiminde; dolgunluk verici olarak tatlı, dondurma ve salata soslarının bileşiminde, ayrıca sosis ve etlerin kaplanmasında güvenilir ve geniş bir kullanım potansiyeline sahiptir. Gıda işleme uygulamalarında bakteriyel selüloz kullanımı üzerinde yapılacak araştırmalardan alınacak sonuçların bakteriyel selülozun daha yaygın kullanımına olanak sağlayacağı düşünülmektedir.

Properties of Bacterial Cellulose and Usage in Food Industry (Turkish with English Abstract)

Cellulose is a polymer which is a structural component of the primary cellwall of green plants and it is widely used in industry. Today cellulose is produced mainly from plantal sources. However, the studies conducted during the last 30 years have concentrated on the cellulose producing bacteria. Bacterial cellulose differs from plantal cellulose as it is more pure, more suited to modification during the process, accepted as GRAS and has a larger water holding capacity. By virtue of these properties, bacterial cellulose is used in food industry for production of low calorie sweets and chips, as an additive in confectioneries and as a thickening agent in ice cream and salad dressing. In addition, it has a high potential as a safe coating agent for sausages and meats. It is thought that the results of the studies on use of bacterial cellulose in food processing will provide more opportinities in its widespread utilization.

___

  • Brown RM Jr. 2004. Cellulose structure and biosynthesis: What is in store for the 21th centry. J Polym Sci Pol Chem, 42, 487–495.
  • Saxena IM, Brown RM Jr. 1997. Identification of cellulose synthase(s) in higher plants: sequence analysis of processive â-glycosyltransferases with the common motif ‘D, D, D35Q(R,Q)XRW, Cellulose, 4, 33–49.
  • Masaoka S, Ohe T, Sakota N. 1993. Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng, 75, 18-22.
  • Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F. 1996. A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotech Bioch, 60(4), 575–579.
  • Tonouchi N, Tsuchida T, Yoshinaga F, Beppu T. 1996. Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci Biotech Bioch, 60(8), 1377–1379.
  • Naritomi T, Kouda T, Yano H, Yoshinaga F. 1998. Effect of ethanol on bacterial cellulose production in continuous culture from fructose. J Ferment Bioeng, 85(6), 598–603.
  • Battad-Bernardo E, McCrindle SL, Couperwhite I, Neilan BA. 2004. Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey. FEMS Microbiol Lett, 231 (2), 253–260.
  • Bae SO, Shoda M. 2005. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl Microbiol Biot, 67(1), 45–51.
  • Kudlicka K. 1986. Evidence from sectioned material in support of the existence of a linear terminal complex in cellulose microfibril assembly. Abstr Pap Am Chem Soc, 192, 24.
  • Keshk SMAS, Razek TMA, Sameshima K. 2006. Bacterial cellulose production from beet molasses. Afr J Biotechnol, 5, 1519–1523.
  • Shibazaki H, Kuga S, Okano T. 1997. Mercerization and acid hydrolysis of bacterial cellulose. Cellulose, 4, 75–87.
  • Skollek SJ, Hertel C, Hammes WP. 1998. Cultivation and preservation of vinegar bacteria. J Biotechnol, 60, 195–206.
  • Tabuchi M, Watanabe K, Morinaga Y, Yoshinaga F. 1998. Acetylation of bacterial cellulose: preparation of cellulose acetate having a high degree of polymerization. Biosci Biotech Bioch, 62(7), 1451–1454.
  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilisation: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66, 506–577.
  • Cıechańska D. 2004. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text East Eur, 12(4), 69–72.
  • Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL. 2008. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mat Sci Eng C, 28, 515–518.
  • Nakagaito AN, Yano H. 2008. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose, 15, 555–559.
  • Poyrazoğlu Çoban E, Bıyık HH. 2008. Asetik Asit Bakterilerinden Elde Edilen Alternatif Selüloz. Elektronik Mikrobiyoloji Dergisi, 6(2), 19–26.
  • Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P. 1998. Improved production of bacterial cellulose and its application potential. Polym Degrad Stabil, 59(7), 93–99.
  • Yamanaka S, Ishihara M, Sugiyama J. 2000. Structural modification of bacterial cellulose. Cellulose, 7(3), 213–225.
  • Brown Jr. RM, Willison JHM, Richardson CL. 1976. Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Cell Biol, 73(12), 4565–4569.
  • Jonas R, Farah LF. 1998. Production and application of microbial cellulose. Polym Degrad Stabil, 59, 101–106.
  • Watanabe K, Tabuchi M, Ishikawa A, Takemura H, Tsuchida T, Morinaga Y, Yoshinaga F. 1998. Acetobacter xylinum mutant with high cellulose productivity and an ordered structure. Biosci Biotech Bioch, 62(7), 1290– 1292.
  • El-Saied H, Basta AH, Gobran RH. 2004. Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym–Plast Technol, 43(3), 797–820.
  • Ross P, Mayer R, Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev, 55(1), 35–58.
  • Brown Jr. RM. 1999. Cellulose structure and biosynthesis. Pure Appl Chem, 71(5), 767–775.
  • Haigler CH, Weimer PJ. 1991. Biosynthesis and Biodegradation of Cellulose, Marcel Dekker, New York, NY.
  • Johnson DC, Neogi AN. 1989. Sheeted products formed from reticulated microbial cellulose. US Patent, 4863565.
  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F. 1998a. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200.
  • Saxena IM, Brown RM Jr. 2005. Cellulose biosynthesis: Current views and evolving concepts. Ann Bot, 96, 9–21.
  • Strobin G, Wlochowicz A, Ciechanska D, Boryniec S, Struszczyk H, Sobczak S. 2004. GPC studies on bacterial cellulose. Int J Polym Mater, 53, 889–900.
  • Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Stromme M. 2007. Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer, 48, 7623–7631.
  • Iguchi M, Yamanaka S, Budhiono A. 2000. Bacterial cellulose - a masterpiece of nature’s arts. J Mater Sci, 35(2), 261–270.
  • Klemm D, Schumann D, Udhard U, Marsch S. 2001. Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci, 26, 1561–1603.
  • Sutherland IW. 2001. Microbial polysaccharides from Gram-negative bacteria. Int Dairy J, 11, 663–674.
  • Branda SS, Vik Å, Friedman L, Kolter R. 2005 Biofilms: the matrix revisited. Trends Microbiol, 13(1), 20–26.
  • Ogawa K, Maki Y. 2003. Cellulose as extracellular polysaccharide of hot spring sulfur-turf bacterial mat. Biosci Biotech Bioch, 67(12), 2652–2654.
  • Poyrazoğlu Çoban E, Bıyık HH. 2007. Acetobacter pasteurianus HBB6 ve Acetobacter lovaniensis HBB5 Tarafından Yüzey Kültür Fermentasyonu ile Bakteriyel Selüloz Üretimi. 15. Ulusal Biyoteknoloji Kongresi 28–31 Ekim, Antalya, pp. 37.
  • Ishihara M, Matsunaga M, Hayashi N, Tišler V. 2002. Utilization of D-xylose as carbon source for production of bacterial cellulose. Enzyme Microb Technol, 31, 986–991.
  • Lee SY, Park SJ, Park JP, Lee Y, Lee SH. 2004. Economic aspects of biopolymer production, Biotechnology of Biopolymers, Ed: Steinbüchel A., VCH-Wiley, Weinheim, Germany, 1107-1138.
  • Çakmakçı ML, Karahan AG, Çakır İ, Gündoğdu, A, Akoğlu A. 2008. Selüloz üretiminde kullanılacak mikroorganizmaların izolasyonu, moleküler tanısı ve mikrobiyel selülozun gıda sanayinde kullanım olanaklarının araştırılması. TÜBİTAK TOVAG 105O156 nolu proje raporu.
  • Keshk SMAS, Sameshima K. 2005. Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol, 4 (6), 478–482.
  • Hesse S, Kondo T. 2005. Behavior of cellulose production of Acetobacter xylinum in 13C-enriched cultivation media including movements on nematic ordered cellulose templates. Carbohydr Polym, 60, 457–465.
  • Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ. 2003. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol, 86, 215–219.
  • Moonmangmee S, Toyama H, Adachi O, Theeragool G, Lotong N, Matsushita K. 2002. Purification and characterization of a novel polysaccharide involved in the pellicle produced by a thermotolerant Acetobacter strain. Biosci Biotech Bioch, 66(4), 777–783.
  • Kouda T, Naritomi T, Yano H, Yoshinaga F. 1997. Effect of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacterin aerated and agitated culture. J Ferment Bioeng, 84(2), 124–127.
  • Hwang JW, Kook YY, Hwang JK, Pyun YR, Kim YS. 1999. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng, 88(2), 183–188.
  • Toda K, Asakura T, Fukaya M, Entani E, Kawamura Y. 1997. Cellulose production by acetic acid-resistant Acetobacter xylinum. J Ferment Bioeng, 84(3), 228–231.
  • Kato N, Sato T, Kato C, Yajima M, Sugiyama J, Kanda T, Mizuno M, Nozaki K, Yamanaka S, Amano Y. 2007. Viability and cellulose synthesizing ability of Gluconacetobacter xylinus cells under high-hydrostatic pressure. Extremophiles, 11, 693–698.
  • Chau CF, Yang P, Yu CM, Yen GC. 2008. Investigation on the lipid- and cholesterol-lowering abilities of biocellulose. J Agric Food Chem, 56, 2291–2295.
  • Khan T, Park JK, Kwon JH. 2007. Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean J Chem Eng, 24(5), 816–826.
  • Sheu F, Wang CL, Shyu YT. 2000. Fermentation of Monascus purpureus on bacterial cellulose-nata and the color stability of Monascus-nata complex. J Food Sci, 65(2), 342–345.
  • Lin KW, Lin HY. 2004. Quality characteristics of Chinese-style meatball containing bacterial cellulose (nata). J Food Sci, 69(3), 107–111.
  • Weber CJ, Haugaard V, Festersen R, Bertelsen G. 2002. Production and applications of biobased packaging materials for the food industry. Food Addit Contam, 19, Supplement. 172–177.
  • Nguyen VT, Gidley MJ, Dykes GA. 2008. Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol, 25, 471–478.