Subkronik 1800 MHz elektromanyetik alan uygulamasının TSH, T3, T4, kortizol ve testosteron hormon düzeylerine etkileri

Amaç: Bu çalışmada, sıçanlar üzerinde 1800 MHz elektromanyetik alanın (EMA) serum TSH, T3, T4, kortizol ve testosteron hormon düzeylerine etkisinin araştırılması amaçlandı. Yöntem: Yirmi yetişkin erkek sıçan her biri 10 hayvandan oluşan iki bağımsız gruba ayrıldı; 1. grup kontroldü, 2. grup (EMA grubu) dört hafta boyunca haftada beş gün ve günde 30 dakika olmak üzere 1800 MHz EMA uygulanan hayvanlardan oluştu. Kontrol grubu, aynı gün ve sürede EMA uygulanmaksızın aynı çevresel şartlarda tutuldu. Çalışma sonunda tüm sıçanların serumunda TSH, T3, T4, kortizol ve testosteron hormon seviyeleri ölçüldü. Bulgular: EMA grubunda T3, T4 ve kortizol hormonlarının seviyeleri kontrol grubundan anlamlı olarak yüksek bulundu. Ancak, serum TSH ve testosteron hormon düzeylerinde kontrol ve EMA grupları arasında anlamlı bir fark bulunmadı. Sonuç: Bu bulgular, cep telefonlarından yayılan 1800 MHz EMA’nın sıçanlarda serum T3, T4 ve kortizol hormonlarını artırdığını, ancak TSH ve testosteron hormon düzeylerini değiştirmediğini gösterdi.

The effects of subchronic 1800 MHz electromagnetic field exposure on the levels of TSH, T3, T4, cortisol and testosterone hormones

Objective: In this study, it was aimed to investigate the effects of 1800 MHz electromagnetic field (EMF) exposure on serum TSH, T3, T4, cortisol and testosterone levels in rats. Methods: Twenty adult male rats were divided into two independent groups (each 10). Group 1 included controls. Group 2 (EMF group) exposed to 1800 MHz EMF for 30 min/day, 5 days/wk for four weeks. Control animals were kept under the same environmental conditions as the study group except with no EMF exposure. At the end of the study, TSH, T3, T4, cortisol and testosterone levels in sera were measured. Results: In the EMF group, T3, T4 and cortisol levels were significantly higher than in control group. However, in the TSH and testosterone levels, there were no significant changes in sera of the rats. Conclusion: These findings indicate that 1800 MHz EMF emitting cellular phones increase serum T3, T4 and cortisol levels, but it has no effect on serum TSH and testosterone levels in rats.

___

  • 1. Hossmann KA, Hermann DM. Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics 2003;24:49-62.
  • 2. Bortkiewicz A. A study on the biological effects of exposure mobile-phone frequency EMF. Med Pr 2001;52:101-06.
  • 3. Yasser M, Randa MM, Belacy SH, Abou-El-Ela Fadel MA. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharma Biom Analysis 2001;26:605-08.
  • 4. Irmak MK, Fadillioglu E, Guleç M, Erdogan H, Yagmurca M, Akyol O. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 2002;20:279-83.
  • 5. Rothman KJ. Epidemiological evidence on health risks of cellular telephones. Lancet 2000;356:25.
  • 6. Özen Ş. Mikrodalga frekanslı EM radyasyona maruz kalan biyolojik dokularda oluşan ısıl etkinin teorik ve deneysel incelenmesi. Doktora Tezi 2003; Sakarya Üniversitesi Fen Bilimleri Enstitüsü Elektronik ve Haberleşme Y Müh.
  • 7. De Seze R, Peray PF, Miro L. GSM radiocellular telephones do not disturb to secretion of antepituitary hormones in humans. Bioelectromagnetics 1998;19:271-8.
  • 8. Selmaoui B, Lambrozo J, Touitou Y. Endocrine functions in young men exposed for one night to a 50-Hz magnetic field. A circadian study of pituitary, thyroid and adrenocortical hormones. Life Sci 1997;61: 473-86.
  • 9. Cox DR. Communication of risk: Health hazards from mobile phones. J Royal Statistical Society: Series A (Statistics in Society) 2003;166: 241-5.
  • 10. Lai H. Research on the neurological effects of non-ionizin gradiation at the University of Washington. Bioelectromagnetics 1992;13: 513-26.
  • 11. Lu ST, Lebda N, Michaelson SM, Pettit S. Serum-thyroxine levels in microwave-exposed rats. Radiat Res 1985;101:413-23.
  • 12. Michaelson SM. Biological effects and dosimetry of non-ionising radiation: Radiofrequency and microwaves energies. New York: NATO Advanced Study Institutes Series: Series A, Life Sciences 1983;Vol 49.
  • 13. Lotz WG, Michaelson SM. Temperature and corticosterone releationship in microwaves exposed rats. J Appl Physiol 1978;44:438-45.
  • 14. Lotz WG, Podgorski RP. Temperature and adrenocortical responses in rhesus monkeys exposed to microwaves. J Appl Physiol 1982;53:1565-71.
  • 15. Lu ST, Lebda N, Pettit S, Michaelson SM. Microwave-induced temperature corticosterone and thyrotropin interrelationships. J Appl Physiol 1981;50:399-405.
  • 16. Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM. Effects of acute exposure to the radiofrequency fields of mobile phones on plasma lipid peroxidase and antioxidase activities in human erythrocytes. J Pharmaceut Biomed Analy 2001;26:605-8.
  • 17. Koyu A, Cesur G, Ozguner F, Akdogan M, Mollaoglu H, Ozen S. Effects of 900 mhz electromagnetıc field on serum TSH and T3 -T4 hormones in rats. Toxicology Lett 2005;157:257-62.
  • 18. Lu ST, Lebda N, Pettit S, Michaelson SM. Microwave-induced temperature, corticosterone, and thyrotropin interrelationships. J Appl Physiol 1981;50:399-405.
  • 19. Mann K, Wagner P, Brunn G, Hassan F, Hiemke C, Röschke J. Effects of pulsed high-frequency electromagnetic fields on the neuroendocrine system. Neuroendocrinology 1998;67:139-44.
  • 20. Udintsev NA, Moroz VV. Mechanism of reaction of the hypophyseo-adrenal system to the stress of exposure to an alternating magnetic field. JPRS L 1976;69:93.
  • 21. Margonato V, Veicsteinas A, Conti R, Nicolini P, Cerretelli P. Biologic efects of prolonged exposure to ELF electromagnetic fields in rats.I. 50 Hz electric fields. Bioelectromagnetics 1995;16:343-55.
  • 22. Navakatikian MA, Tomashevskaya LA. “Biological effects of electric and magnetic fields: Vol 1. Sources and Mechanisms.” London: Academic Press 1994.