Stresli ve stressiz sıçanlarda fluoksetin hidroklorür kullanımının öğrenme ve bellek üzerine etkileri

Amaç: Bu çalışmada, stresin ve antidepresan ilaç tedavisinin sıçanlarda öğrenme ve bellek üzerine etkisinin araştırılması amaçlandı. Yöntem: 24 adet erişkin Wistar albino cinsi erkek sıçanlar, stresli- ilaçlı (GrupI), stresliilaçsız (GrupII), stressiz-ilaçlı (GrupIII) ve stressiz ilaçsız (GrupIV) olmak üzere rastgele 4 gruba ayrıldı. Stres oluşturmak için 16 °C suda 30 dakika bekletilen sıçanlara gavajla antidepresan olarak Fluoksetin hidroklorür 10 mg/kg/gün dozunda (FLX; Prozac) uygulandı. Öğrenme testleri Morris su tankında gerçekleştirildi. Sıçanlar tankta yüzdürülerek, sıçanların kaçış platformunu bulma süreleri incelendi. Bulgular: Grup I ve III’deki sıçanların günlere göre platformu bulma süreleri tutarlı bir şekilde azalırken Grup II’deki sıçanların tankta uzun süre hareketsiz kaldıkları, platformunu bulma sürelerinin düzensiz ve oldukça uzun olduğu tespit edildi. Grup IV’deki sıçanların günler arasında platformu bulma sürelerinde azalma çok belirgindi. Her grup içinde 34. günde kaçış platformunu bulma süreleri uzamıştı. 34. günde Grup IV’deki sıçanlarda strese bağlı hareketsiz kalma durumunun halen devam ettiği gözlendi. Sonuç: Stres altında olmadan fluoksetin hidroklorür kullanımının öğrenmeyi günlere göre anlamlı olarak, olumlu etkilediğini, stresli iken fluoksetin hidroklorür kullanımının ise stresin öğrenme üzerine olumsuz etkisini azalttığını ve strese bağlı durgunluk halini düzelttiğini tespit ettik. İlaç, bırakıldıktan 30 gün sonra, uzun süreli belleğin konsolidasyonu üzerinde etkili olmamıştır.

Effects of fluoxetine hydrochloride treatment on learning and memory in stressful and stress-free rats

Objective: In this study, it is aimed to investigate the effects of stress and antidepressant drug treatment on learning and memory in rats. Method: 24 male Wistar albino adult rats were randomly divided into four groups as stressful- medicated (Group I), stressful- drug-free (Group II), stress-free-medicated (Group III) stress-free-drugfree (Group IV). For stress model, rats were stayed in 16°C for 30 min. Fluoxetine hydrochloride (FLX; Prozac, 10mg/kg/day) by gavage as antidepressant. Learning tests were performed in Morris water maze. Rats were swam in the tank, the rats were investigated finding time the escape platform. Results: Time to find platform with respect to days was consistently decreased in Group I and III although in Group II rats were stayed immobile for a long time in maze and in this group time to find platform was irregular and too long. Decrease of time to find platform in Group IV was significant while the difference between other days was fewer. In day 34, time to find platform was prolonged within each group and staying immobile due to stress was remained. Conclusion: Use of fluoxetine hydrochloride in stress-free conditions significantly effects learning positively by day; in stressful conditions fluoxetine hydrochloride treatment decreased negative effects of stress on learning and impaired inactivity pattern. 30 days after quitting drug treatment, fluoxetine hydrochloride did not affect the consolidation of long-term memory.

___

  • 1. Alaei Anisman H, Matheson K. Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Revs 2005;29:525–46.
  • 2. Beck AT, Brown G, Steer RA, Eidelson JI, Riskind JH. Differentiating anxiety and depression: a test of the cognitive content-specificity hypothesis. J Abnormal Psychol 1987;96:179–83.
  • 3. Fossati P, Amar G, Raoux N Ergis AM, Allilaire JF. Executive functioning and verbal memory in young patients with unipolar depression and schizophrenia. Psychiatry Research 1999;89:171–87.
  • 4. Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, et al. Lifetime and 12-month prevalence of DSM III-R psychiatric disorders in the United States: results from the national comorbidity survey. Arch Gen Psychiatry 1994;51:8–19.
  • 5. Mineka S, Watson D, Clark LA. Comorbidity of anxiety and unipolar mood disorders. Ann Rev Psychol 1998;49:377–412.
  • 6. Ravnkilde B, Videbech P, Clemmensen K, Egander A, Rasmussen NA, Rosenberg R. Cognitive deficits in major depression. Scand J Psychol 2002;43:239–51.
  • 7. Vouimba RM, Munoz C, Diamond DM. Differential effects of predator stress and the antidepressant tianeptine on physiological plasticity in the hippocampus and basolateral amygdala. Stress 2006;9:29–40.
  • 8. de Quervain DJ, Roozendaal B, Nitsch RM, McGaugh JL, Hock C. Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nature Neurosci 2000;3:313–4.
  • 9. Joëls M, Pu Z, Wiegert O. Learning under stress: how does it work? Trends in Cog Sci 2006;10:152-8.
  • 10. Kirschbaum, C., Wolf OT, May M, Wippich W, Hellhammer DH. Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996;58:1475–83.
  • 11. McGaugh, JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 2004;27:1–28.
  • 12. Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S, et al. Modulation of cortico-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 2004;61:34–41.
  • 13. Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psyc 2001;158:899–905.
  • 14. Bondi CO, Jett JD, Morilak DA. Beneficial effects of desipramine on cognitive function of chronically stressed rats are mediated by α1-adrenergic receptors in medial prefrontal cortex. Prog Neuro-Psychopharmacol & Biol Psychiatry 2010;34:913–23.
  • 15. Bhagya V, Srikumar BN, Raju TR, Rao BS. Chronic escitalopram treatment restores spatial learning, monoamine levels, and hippocampal long-term potentiation in an animal model of depression. Psychopharmacol. 2011;214:477-94.
  • 16. Bondi CO, Rodriguez G, Gould GG Frazer A, Morilak DA. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacol 2008;33:320–31.
  • 17. Danet M, Lapiz-Bluhm S, Soto-Piña AE. Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacol 2009;202:329–41.
  • 18. Conboy L, Tanrikut C, Zoladz PR, Campbell AM, Park CR, Gabriel C, et al. The antidepressant agomelatine blocks the adverse effects of stress on memory and enables spatial learning to rapidly increase neural cell adhesion molecule (NCAM) expression in the hippocampus of rats. Int J Neuropsychopharmacol 2009;12:329–41.
  • 19. Malberg JE, Eisch AJ, Nestler EJ. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000;20:9104–10.
  • 20. Danet M, Lapiz-Bluhm S, Morilak DA. A cognitive deficit induced in rats by chronic intermittent cold stress is reversed by chronic antidepressant treatment. Int J Neuropsychopharmacol 2010;13:997–1009.
  • 21. Faes C, Aerts M, Geys H, De Schaepdrijver L. Modeling spatial learning in rats based on Morris water maze experiments. Pharmaceut Statist 2010;9:10-20.
  • 22. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984;11:47-60.
  • 23. Laura L, Maha EB, Jariya U, Rachel M, Carla S, Geoffrey B, et al. Fluoxetine reverses the memory impairment and reduction in proliferation and survival of hippocampal cells caused by methotrexate chemotherapy. Psychopharmacol 2011;215:105–15.
  • 24. Gallagher M, Burwell R, Burchinal M. Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze. Behav Neurosci 1993;107:618-26.
  • 25. Laurian G, Sarah H, Lauriston AK, Kishor B, Vivienne AR. Effect of exercise on learning and memory in a rat model of developmental stres. Metab Brain Dis 2009;24:643–57.
  • 26. Rocher C, Spedding M, Munoz C, Jay TM. Acute stres induced changes in hippocampal/prefrontal circuits in rats: Effects of antidepressants. Cereb Cortex 2004;14:224–9.
  • 27. Shors TJ. Acute stress rapidly and persistently enhances memory formation in the male rat. Neurobiol Learn Mem 2001;75:10–29.
  • 28. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psych 2000;57: 925–35.
  • 29. Alaei H, Moloudi R, Sarkaki AR, Azizi-Malekabadi H, Hanninen O. Daily running promotes spatial learning and memory in rats. Pathophysiol. 2007;14:105-8.
  • 30. Durmuş L, Aşçıoğlu M. The effect of social isolation stress on learning in male juvenile rats. J Health Sci 2005;14:52-6.
  • 31. Pittenger C, Duman RS. Stress, depression and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacol 2008;33:88–109.
  • 32. Shors TJ, Seib TB, Levine S, Thompson RF. Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 1989;244: 224–6.
  • 33. Luine V, Martinez C, Villegas M, Magarinos A, McEwen B. Restraint stress reversibly enhances spatial memory performance. Physiol Behav 1996;59:27–32.
  • 34. Conrad CD, Galea LA, Kuroda Y, McEwen BS. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 1996;110:1321–34.
  • 35. de Quervain DJ, Roozendaal B, McGaugh J. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 1998;394:787–90.
  • 36. Diamond D, Park C, Heman K, Rose G. Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus 1999;9:542–52.
  • 37. Duman RS. Depression: A case of neuronal life and death? Biol Psych 2004;56:140–5.
  • 38. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psych 2004;56:640–50.
  • 39. Vyas A, Jadhav S, Chattarji S. Prolonged behavioral stres enhances synaptic connectivity in the basolateral amygdala. Neurosci 2006;143:387–93.
  • 40. Vyas A, Pillai AG, Chatarji S. Recovery after chronic stres fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neurosci 2004;128: 667–73.
  • 41. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003;100:1387–92.
  • 42. Holderbach R, Clark K, Moreau JL, Bischofberger J, Normann C. Enhanced long-term synaptic depression in an animal model of depression. Biol Psych 2007;62: 92–100.
  • 43. Sharma VK. Morris Water Maze-A versatile cognitive tool. J Biosci Tech 2009;1:15-9.
  • 44. Stewart CA, Reid IC. Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacol 2000;148:217–23.
  • 45. Mowla A, Mosavinasab M, Pani A. Does fluoxetine have any effects on the cognition of patients with mild cognitive impairment? A double-blind, placebo-controlled, clinical trial. J Clin Psychopharm 2007;27:67–70.