Nitrik oksit sentaz (NOS) inhibitörlerinin sıçanlarda çok düşük frekanslı manyetik alanın indüklediği analjezi üzerine etkileri

Amaç: Elektromanyetik alanın (EMA) farklı ağrı türlerini azalttığı bilinmektedir. Bununla birlikte, manyetik alanın analjezik etki mekanizması tam olarak anlaşılamamıştır. Bu çalışmanın amacı, nitrik oksit sentaz (NOS) inhibitörlerinin sıçanlarda çok düşük frekanslı EMA maruziyeti ile oluşan analjezi üzerine etkilerini araştırmaktır.Gereç ve Yöntem: Bu çalışmada 72 yetişkin erkek Wistar albino sıçan (yaklaşık 230 ± 12 g ağırlığında) kullanıldı. Sıçanlar, 22 ± 2 °C oda sıcaklığında, 12 saat aydınlık/karanlık siklusun sağlandığı ve ses yalıtımı olan ortamda tutuldu. Elektromanyetik alan (50 Hz), her gün dört defa 30 dakika süre ve 15 dakika aralıklar ile 15 gün boyunca uygulandı. Analjezik etki ölçümü tail-flick ve hot-plate testleri ile gerçekleştirildi. Analjezi testinden önce sıçanlara nitrik oksit donörü SNAP (30 mg/kg) ve NOS inhibitörleri L-NAME (40 mg/kg) ve 7-NI (25 mg/kg) intraperitoneal olarak enjekte edildi. Verilerin istatistiksel analizinde varyans analizi (iki yönlü ANOVA) kullanılmış ve çoklu karşılaştırma Tukey testleri ile yapıldı. İstatistiksel olarak anlamlılık düzeyi p

Objective: It is known that the electromagnetic field (EMF) reduces the different types of pain. However, the mechanism of magnetic field analgesia is not fully understood. Our aim of this study is to investigate the effects of nitric oxide synthase (NOS) inhibitors on analgesia induced by extremely low frequency EMF in rats.Material and Methods: In this study were used 72 adult male Wistar albino rats (approximately 230 ± 12 g). The rats were provided environment where is at 22 ± 2 °C room temperature, 12-hour light/dark cycle and insulated from sound. The application of electromagnetic field (50 Hz), the same times for 30 minutes each day for 15 days, and a total of four times every 15 minute intervals. The analgesic effect measurement was performed by tail-flick and hot-plate tests. Prior to analgesia test, nitric oxide donor SNAP (30 mg/kg) and NOS inhibitors L-NAME (40 mg/kg) and 7-NI (25 mg/kg) were injected intraperitoneally in rats. In the statistical analyzes of the data, analysis of variance (two-way ANOVA) was used and the multiple comparison determined by Tukey tests. The level of statistically significant was expressed p <0.05.Results: Analgesia test results indicated that the maximum analgesic effect of elektromagnetic field produces in 5 mT and on day 7. Administration of L-NAME and 7-NI in rats exposed to a magnetic field the analgesic effects were significantly higher than EMF group rats (p<0.05). On the contrary, administration of SNAP in rats exposed to a magnetic field the analgesic effects significantly reduced compared to the EMF group (p <0.05).Conclusion: Obtained data suggested that the administration of L-NAME and 7-NI increased analgesic efficacy subjected to electromagnetic field in rats, whereas the administration of SNAP reduced the analgesic activity.

___

1. Del Seppia C, Ghione S, Luschi P, Ossenkopp K-P, Choleris E, Kavaliers M. Pain perception and electromagnetic fields. Neuroscience and Biobehavioral Reviews 2007; 31:619-42.

2. Sienkiewicz Z, Jones N, Bottomley A. Neurobehavioral effects of electromagnetic fields. Bioelectromagnetics 2005;7:116-26.

3. Vallbona C, Richards T. Evolution of magnetic therapy from alternative to traditional medicine. Physical Medicine and Rehabilitation Clinics of North America 1999;10:729-54.

4. Bachl N, Ruoff G, Wessner B, Tschan H. Electromagnetic interventions in musculoskeletal disorders. Clin Sports Med 2008; 27:87-105.

5. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007;127:514-25.

6. Arendash GW. Review of the evidence that transcranial electromagnetic treatment will be a safe and effective therapeutic against Alzheimer's disease. Journal of Alzheimer's Disease 2016;53:753-71.

7. Medina FJ, Túnez I. Huntington's disease: the value of transcranial meganetic stimulation. Curr Med Chem 2010;17:2482-91.

8. Cuccurazzu B, Leone L, Podda MV, et al. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol 2010; 226:173-82.

9. Keck ME, Sillaber I, Ebner K, et al. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 2000;12:3713-20.

10. Baltaci AK, Mogulkoc R, Salbacak A, Celik I, Sivrikaya A. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues. Bratisl Lek Listy 2012;113:400-3.

11. Bediz CS, Baltaci AK, Mogulkoc R, Oztekin E. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J Exp Med 2006;208:133-40.

12. Ossenkopp K-P, Kavaliers M, Prato FS, Teskey GC, Sestini E, Hirst M. Exposure to nuclear magnetic resonance imaging procedure attenuates morphine-induced analgesia in mice. Life Science 1985;37:1507-14.

13. Kavaliers M, Ossenkopp KP, Tysdale DM. Evidence for the involvement of protein kinase C in the modulation of morphine- induced 'analgesia' and the inhibitory effects of exposure to 60-Hz magnetic field in the snail, Cepaea nemoralis. Brain Research 1991;554:65-71.

14. Kosar MI, Demir T, Demirkazik A, Deveci K, Ozdemir E, Gulturk S. Antinociceptive effects in normal and diabetic rats exposed to 50 hz magnetic field. Neurophysiology 2012;44:56-62.

15. Thomas AW, White KP, Drost DJ, Cook CM, Prato FS. A comparison of rheumatoid arthritis and fibromyalgia patients and healthy controls exposed to a pulsed (200 microT) magnetic field: Effects on normal standing balance. Neurosci Lett 2001; 309:17-20.

16. Johnson MT, Waite LR, Nindl G. Noninvasive treatment of inflammation using electromagnetic fields: Current and emerging therapeutic potential. Biomed Sci Instrum 2004; 40: 469-74.

17. Lai H, Carino M. Intracerebroventricular injection of muand delta-opiate receptor antagonists block 60 Hz magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat. Bioelectromagnetics 1998;19:432-7.

18. Bao X, Shi Y, Huo X, and Song T. A possible involvement of ß-endorphin, Substance P, and serotonin in rat analgesia induced by extremely low frequency magnetic field. Bioelectromagnetics 2006; 27: 467-72.

19. Kavaliers M, Ossenkopp K-P. Magnetic fields inhibit opioid - mediated "analgesic" behaviour of the terrestrial snails, Cepaea nemoralis. Journal of Comparative Physiology A 1988;162:551-8.

20. Sieron A, Labus L, Nowak P, et al. Alternating extremely low frequency magnetic field increases turnover of dopamine and serotonin in rat frontal cortex. Bioelectromagnetics 2004; 25: 426-30.

21. Pilla AA. Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Biochemical and Biophysical Research Communications 2012; 426: 330-3.

22. Cheng G, Zhai Y, Chen K, et al. Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO-cGMP-PKG pathway. Nitric Oxide 2011; 25: 316-25.

23. Patruno A, Amerio P, Pesce M, et al. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. British Journal of Dermatology 2010; 162: 258-66.

24. Moore PK, Oluyomi A, Babbedge RC, Wallace P, Hart SL. L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol 1991;102: 198-202.

25. Machelska H, Przew1ocki R, Radomski MW, Przew1ocka B. Differential effects of intrathecally and intracerebroventricularly administered nitric oxide donors on noxious mechanical and thermal stimulation. Pol J Pharmacol 1998; 50:407-15.

26. Wong CS, Cherng CH, Tung CS. Intrathecal administration of excitatory amino acid receptor antagonists or nitric oxide synthase inhibitor reduced autotomy behavior in rats. Anesth Analg 1998;87:605-8.

27. Kanaan SA, Saade NE, Haddad JJ, et al. Endotoxin-induced local inflammation and hyperalgesia in rats, a new model for inflammatory pain. Pharmacology 1996;66:373-9.

28. Ramabadran K, Bansinath M, Turndorf H, Puig MM. The hyperalgesic effect of naloxone is attenuated in streptozotocin-diabetic mice. Psychopharmacology (Berl.) 1989; 97:169-74.

29. Martin LJ, Persinger MA. Thermal analgesia induced by 30- min exposure to 1 mT burst-firing magnetic fields is strongly enhanced in a dose-dependent manner by the ?2 agonist clonidine in rats. Neurosci Lett 2004;366:226-9.

30. Shupak NM, Hensel JM, Cross-Mellor SK, Kavaliers M, Prato FS, Thomas AW. Analgesic and behavioral effects of a 100 mT specific pulsed extremely low frequency magnetic field on control and morphine treated CF-1mice. Neurosci Lett 2004; 354:30-3.

31. Nindl G, Balcavage WX, Vesper DN, et al. Experiments showing that electromagnetic fields can be used to treat inflammatory diseases. Biomed Sci Instrum 2000; 36: 7-13.

32. Kavaliers M, Ossenkopp KP. Tolerance to morphine-induced analgesia inmice: Magnetic fields function as environmental specific cues and reduce tolerance development. Life Sci 1985;37:1125-35.

33. Kavaliers M, Ossenkopp KP. Repeated naloxone treatments and exposures toweak 60 Hzmagnetic fields have 'analgesic'effects in snail. Brain Res 1993;620:159-62.

34. Thomas AW, Kavaliers M, Prato FS, Ossenkopp KP. Pulsed magnetic field induced ''analgesia'' in the Land Snail, Cepaea nemoralis, and the effects of m,d, and k opioid receptor agonists/antagonists. Peptides 1997a;18:703-9.

35. Thomas AW, Kavaliers M, Prato FS, Ossenkopp KP. Analgesic effects of a specific pulsed magnetic field in the land snail, Cepaea nemoralis: Consequences of repeated exposures, relations to tolerance and cross-tolerance with DPDPE. Peptides 1997b;19:333-42.

36. Rosen A, Zhang YX, Lund I, Lundeberg T, Yu LC. Substance P microinjected into the periaqueductal gray matter induces antinociception and is released following morphine administration. Brain Res 2004;1001:87-94.

37. Atalık KE, Doğan N. Nitrik oksit ve fizyolojik etkileri. Genel Tıp Derg 1997;7:167-9.

38. Makuch W, Mika J, Rojewska E, Zychowska M, Przewlocka B. Effects of selective and non-selective inhibitors of nitric oxide synthase on morphine- and endomorphin-1-induced analgesia in acute and neuropathic pain in rats. Neuropharmacology 2013;75: 445-57.

39. Ozdemir E, Bagcivan I, Durmus N, Altun A, and Gursoy S. The nitric oxide-cGMP signaling pathway plays a significant role in tolerance to the analgesic effect of morphine. Canadian Journal of Physiology and Pharmacology 2011;89:89-95.

40. Moore PK, Wallace P, Gaffen Z, Hart SL, Babbedge RC. Characterizationof the novel nitric oxide synthase inhibitor 7-nitro indazole and related indazoles: antinociceptive and cardiovascular effects. Br J Pharmacol 1993;110:219-24.

41. Handy RL, Wallace P, Gaffen ZA, Whitehead KJ, Moore PK. The antinociceptive effect of 1-(2-trifluoromethylphenyl) imidazole (TRIM), a potentinhibitor of neuronal nitric oxide synthase in vitro, in the mouse. Br J Pharmacol 1995;116:2349-50.

42. Bawin SM, Satmary WM, Jones RA, Adey WR, Zimmerman G. Extremely low frequency magnetic field disrupt rhythmic slow activity in rat hippocampal slices. Bioelectromagnetics 1996; 17: 388-95.

43. Yoshikawa T, Tanigawa M, Tanigawa T, Imai A, Hongo H, Kondo M. Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology 2000;7:131-5.

44. Jeong JH, Kum C, Choi HJ, Park ES, Sohn UD. Extremely low frequency magnetic field induces hyperalgesia in mice modulated by nitric oxide synthesis. Life Science 2006;78:1407-12.

45. Machelska H, Labuz D, Przewlocki R, Przewlocki B. Inhibition of nitric oxide synthase enhance antinociception mediatedby mu, delta and kappa opioid receptors in acute and prolonged pain in the rat spinal cord. The Journal of Pharmacology and Experimental Therapeutics 1997; 282: 977-84.