Hidrojen peroksidin dana koroner arterini gevşetici etkisinde L-tipi voltaja bağlı kalsiyum kanallarının rolünün araştırılması

Amaç: Bu in vitro çalışmada, hidrojen peroksidin L-tipi voltaja bağımlı kalsiyum kanallarını etkileyip etkilemediğinin araştırılması amaçlandı. Yöntem: Dana sol koroner arterinin inen ön dalından elde edilen halkalar rastlantısal şekilde bir kontrol ve iki deneme grubuna ayrıldı. Tüm halkalar 37 oC derecede Krebs-Henseleit solüsyonu içeren ve % 95 O2 - % 5 CO2 karışımı ile sürekli olarak gazlandırılan 10 ml hacminde organ banyosu içine alındı. 1,5 g gerim altında 90 dakika dinlenme periyodunu takiben halkalara ilaç ve maddeler uygulandı. Bulgular: Tüm gruplarda, kümülatif tarzda uygulanan hidrojen peroksit (10-7 – 10-2 M), serotonin (10-6 M) ile ön kasılma oluşturulan halkalarda doza bağlı gevşemeler oluşturdu. Deneme gruplarındaki gevşeme cevaplarının, L-tipi voltaja bağlı kalsiyum kanal blokeri nifedipin (10-6 M) ve L-tipi voltaja bağlı kalsiyum kanal açıcı BAY K-8644 (10-7 M) ile değiştirilmediği gözlendi (P>0.05). Sonuç: Bu veriler ile hidrojen peroksidin L-tipi voltaja bağımlı kalsiyum kanalları üzerine etkisinin olmadığı söylenebilir.

Evaluation of the role of L-type voltage dependent calcium channels on relaxing effect of hydrogen peroxide in bovine coronary artery

Objective: In this study, it was aimed to investigate whether hydrogen peroxide effect L-type voltage-gated calcium channels. Methods: The rings obtained from bovine left anterior descending coronary artery randomly assigned into one control (n=6) and two experimental groups (n=6). All of the rings were placed into 10 ml organ baths containing Krebs-Henseleit solution at 37 oC continuously bubbled with 95% O2 - 5% CO2 gas mixtures. Following 90 minutes resting period under 1,5 g tension, drugs and chemicals were applied to the rings. Results: In all groups, hydrogen peroxide, in a cumulative manner (10-7 – 10-2 M), induced dose-dependent relaxations in the rings precontracted with serotonin (10-6 M). It was observed that the relaxation responses in experimental groups were not changed by L- type calcium channel blocker, nifedipine or L-type voltage dependent calcium channel opener, BAY K-8644 (10-7 M). Conclusion: According to these data it may suggest that hydrogen peroxide has no effect on L-type voltage dependent calcium channels.

___

  • 1. Fantone JC, Ward PA. Role of oxygen-derived free radicals and metabolities in leukocyte-dependent inflammatory reactions. Am Heart J 1982;107:397-417.
  • 2. Kayaalp SO. Rasyonel Tedavi Yönünden Tıbbi Farmakoloji. Onbirinci baskı. Ankara: Hacettepe-Taş; 2005.
  • 3. Prasad K, Kalra J. Experimental atherosclerosis and oxygen free radicals. Angiology 1989;40:835-43.
  • 4. Flora SJ. Role of free radicals and antioxidants in health and disease. Cell Mol Biol 2007;53:1-2.
  • 5. Toren F. Oxygen radicals and signaling. Curr Opin Cell Biol 1998;10:248-53.
  • 6. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell 2007;26:1-14.
  • 7. Okatani Y, Watanabe K, Sagara Y. Effect of nitric oxide, prostacyclin, and thromboxane on the vasospastic action of hydrogen peroxide on human umbilical artery. Acta Obstet Gynecol Scand 1997;76:515-20.
  • 8. Sheehan DW, Giese EC, Gugino SF, Russel JA. Characterization and mechanisms of H2O2-induced contractions of pulmonary arteries. Am J Physiol 1993;264:1542-47.
  • 9. Iesaki T, Gupte SA, Kaminski PM, Wolin MS. Inhibition of guanylate cyclase stimulation by NO and bovine arterial relaxation to peroxynitrite and H2O2. Am J Physiol 1999;277: 978-85.
  • 10. Wei EP, Kontos HA, Beckman JS. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 1996;271:1262-6.
  • 11. Ulusoy HB, Şahin AS, Doğan N. Hidrojen peroksid’in dana koroner arter düz kasında gevşetici etki mekanizmaları. SÜ Tıp Fak Derg 2003;19:71-8.
  • 12. Barlow RS, White RE. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 1998;275:1283-89.
  • 13. Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, Swafford AN et al. H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+ channels. Am J Physiol Heart Circ Physiol 2006;291:2473-82.
  • 14. Drouin A, Thorin-Trescases N, Hamel E, Falck JR, Thorin E. Endothelial nitric oxide synthase activation leads to dilatory H2O2 production in mouse cerebral arteries. Cardiovasc Res 2007;73:8-9.
  • 15. Cogolludo A, Frazziano G, Cobeño L, Moreno L, Lodi F, Villamor E et all. Role of reactive oxygen species in Kv channel inhibition and vasoconstriction induced by TP receptor activation in rat pulmonary arteries. Ann N Y Acad Sci 2006,1091:41-51.
  • 16. Yang ZW, Zheng T, Wang J, Zhang A, Altura BT, Altura BM. Hydrogen peroxide induces contraction and raises [Ca2+]i in canine cerebral arterial smooth muscle: participation of cellular signaling pathways. Naunyn-Schmiedeberg’s Arch Pharmacol 1999;360:646-53.
  • 17. Tabet F, Savoia C, Schiffrin EL, Touyz RM. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 2004; 44:200-8.
  • 18. Krippeit-Drews P, Haberland C, Fingerle J, Drews G, Lang F. Effects H2O2 on membrane potential and [Ca2+]i of cultured rat arterial smooth muscle cells. Biochem Biophys Res Commun 1995;209:139-45.
  • 19. Fujimoto S, Asano T, Sakai M, Sakurai K, Takagi D, Yoshimoto N, et al. Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery. Eur J Pharmacol 2001;412:291-300