Su Basması Stresi ve Geri Kazanım Uygulamasının Bazı Taze Fasulye Genotipleri Üzerine Etkileri

Bu çalışmada 15 taze fasulye (Phaseolus vulgaris L.) genotipinin su basması stresine toleransları ve geri kazanım kapasiteleri morfolojik ve fizyolojik açıdan araştırılmıştır. Bitkiler kontrollü sera koşullarında ortalama 30/17ºC sıcaklık (gündüz/gece) ve %50 nemde yetiştirilmiştir. Fideler 3-4 yapraklı olduğu dönemde 7 gün süre ile su basması stresine maruz bırakılmış ve sonrasında 7 gün boyunca geri kazanım uygulamasına tabi tutulmuştur. Su basması uygulamasının sonunda genotiplere ait yaprak ve kök yaş-kuru ağırlıkları ile toplam klorofil miktarının önemli derecede azaldığı tespit edilmiştir. Su basması uygulamalarına oranla geri kazanım uygulamalarının yaprak yaş-kuru ağırlığı ile toplam klorofil miktarında artışa neden olduğu belirlenmiştir. Bununla birlikte geri kazanım uygulamalarının kök yaş-kuru ağırlığına, olgun yaprakların yaprak alanına olan etkisi genotiplere göre farklılık göstermiştir. Su basması uygulaması sonunda bütün genotiplerin iyon sızıntısı (%) oranlarında artış belirlenmiştir ve bu oranların geri kazanım uygulamaları sonucu elde edilen oranlardan yüksek olduğu tespit edilmiştir. Şeker Fasulye genotipinin göreceli olarak tolerant, Y1 genotipinin ise nispeten hassas olduğu ortaya konulmuştur. İncelenen tüm parametreler dikkate alındığında fasulye genotiplerinin su basması stresine toleranslarının ve geri kazanım kabiliyetlerinin kök ve yaprak bölgesine göre farklılıklar gösterdiği belirlenmiştir.

The Effects of Waterlogging Stress and Recovery Treatment on Some Common Bean Genotypes

Tolerance and recovery ability of green bean genotypes to waterlogging stress were investigated in terms of morphological and physiological in 15 genotypes. Plants were grown under controlled green house conditions at 30/17ºC temperature (day/night) and 50 % relative humidity. When the plants have developed 3-4 true leaves seedlings were exposed to waterlogging stress for 7 days and then taken to normal growth conditions. At the end of waterlogging treatment both roots and leaves fresh and dry weight, total chlorophyll content values were significantly reduced. It was determined that recovery treatment, compared to waterlogging treatment, increased leaf fresh-dry weight, total chlorophyll content. Besides, root fresh and dry weight and old leaves’ leaf area varied depending on genotype. After waterlogging treatment the degree of ion leakage (%) was increased at all genotypes more than the recovery treatment. Şeker Fasulye was determined as the tolerant genotype, whereas Y1 was determined as relatively more sensitive genotype. According to the general evaluation, tolerance to waterlogging stress and recovery capacity of green bean genotypes changed depending on root and leaf part.

___

  • Aloni, B. and G., Rosenshtein, 1982. Effect of flooding on tomato cultivars: The relationship between proline accumulation physiological changes. Physiologia Plantarum, 56: 513-517. morphological and
  • Anonim, 2011. TUİK: Türkiye İstatistik Kurumu.http:// www.tuik.gov.tr
  • Anonymous, 2011. FAO: Food and Agricultural Organization of United Nations: Economic and Social http://www.fao.org Statistical Division.
  • Arora, R., D.S., Pitchay andB.C., Bearce, 1998. Water- stress-induced heat tolerance in Geranium leaf tissues: A possible linkage through stres proteins? Physiologia Plantarum, 103:24-34.
  • Bailey-Seres, J. and L.A.C.J., Voesenek, 2008. Flooding Stress: Acclimations and Genetic Diversity. Annual Review of Plant Biology, 59: 313-339.
  • Blokhina, O., E., Virolainen andK.V., Fagerstedt, 2003. Antioxidants, oxidative damage and oxygen chlorophyll a fluorescence
  • Eugenia, M., S., Nunes andG.R, Smith, 2003. Electrolyte leakage assay capable of quantifying freezing resistance in rose clover. Crop Sci., 43:1349–1357.
  • Jackson, M.B, K., Ishizawa andO., Ito, 2009. Evolution and mechanisms of plant tolerance to flooding stress. Annals of Botany, 103(2): 137-142.
  • Kozlowski, T.T., 1984. Plant responses to flooding of soil. Bioscience, 34 (3): 162-167.
  • Kozlowski T.T., 1997. Responses of woody plants to flooding and salinity. Tree Physiology Monograph No.1.
  • Kumutha, D., K., Ezhilmathi, R.K., Sairam, G.C., Srivastava, P.S., Deshmukh and R.C., Meena, 2009. Waterlogging antioxidant activity in pegeonpea genotypes. Biologia Plantarum, 53 (1): 75-84. oxidative stress and
  • Lakitan, B., D.W., Wolfe and R.W., Zobel, 1992. Flooding Affects Snap Bean Yield and Genotypic Variation in Leaf Gas Exchange and Root Growth Response. J. Amer. Soc. Hort. Sci., 117(5):711-716.
  • Levitt, J., 1980. Chilling, Freezing and High Temperature Stresses in: Responses of Plants to Environmental Stresses I. Published By Academic Pres, Inc., 2nd Edition, 607.
  • Liao, C.T. and C.H., Lin, 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Counc. Roc(B), 25 (3):148-157.
  • Luo, F-L., K.A., Nagel, H., Scharr, B., Zeng, U., Schurr and S. Matsubara, 2011. Recovery dynamics of growth, accumulation after de-submergence: a comparison between two wetland plants showing escape and quiescence strategies. Annals of Botany, 107: 49–63, 2011. and carbohydrate
  • Moran, R. and D., Porath, 1980. Chlorophyll determination in intact tissues using N,N-Dimethylformamide. Plant Physiology, 65(3):478-479.
  • Nakayama, N. and S., Komatsu, 2008. Water uptake by seeds in yellow-seeded soybean (Glycine max (L.) Merrill) behaviors. Plant Production Science, 11: 415-422.
  • Palta, J.P., K.G., Jensen andP.H., Li, 1982. Cell membrane alterations following a slow freeze thaw cycle: ion leakage, injury and recoveryin: Plant Cold Hardiness and Freezing Stress, Volume 2. Edited Li P.H. and Sakai A. Published By the Acad.Press, N.Y., 221- 242.
  • Perata P. and L.A.C.J., Voesenek, 2007. Submergence tolerance in rice requires Sub1A, an ethylene- response-factor-like gene. Trends Plant Sci.,12:43–46
  • Pociecha, E., J., Koscielniak andW., Filek, 2008. Effect of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol. Plant, 30: 529-535.
  • Premachandra, G.S., H., Saneoka, K. Fujita, and S., Ogata, 1992. Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in Sorghum. Journal of Experimental Botany, 43: 1569-1576.
  • Rao, R., Y., Li, H.H., Bryan, S.T., Reed, and F., D’Ambrosio, 2002. Assessment of foliar sprays to alleviate flooding injury in corn(Zea Mays L.). Proc. Fla. State Hort. Soc., 115: 208-211.
  • Samad, A., C.A., Meisner, M., Saifuzzaman, and M., van Ginkel, 2001. Waterlogging tolerance in: Application of Physiology in Wheat Breeding. Edited M.P., Reynolds, J.I. Ortiz-Monasterio, and A. McNab, Published By Mexico, D.F.: CIMMYT, 136-144.
  • Singer, S.M., Y.I., Helmy, A.N., Karas andA.F., Abou- Hadid, 1996. Growth and development of bean plants (Phaseolus vulgaris L.) grown under water- stress. Cahiers Options Mediterraneennes, 31: 241-250.
  • Visser, E.J.W., L.A.C.J., Voesenek, B.B., Vartapetian andM.B., Jackson, 2003. Flooding and plant growth. Annals of Botany, 91: 107-109.
  • Vural H., D., Eşiyok veİ., Duman, 2000. Kültür Sebzeleri (Sebze Yetiştirme). Ege Üniversitesi Basımevi, 440 s., İzmir.
  • Yetisir, H., M., Caliskan, S., Soylu and M., Sakar., 2006. Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria Siceraria to flooding. Environmental and Experimental Botany, 58: 1-8.
  • Yiu, J.C., C.W., Liu, C.T., Kuo, M.J., Tseng, Y.S., Lai andW.J., Lai, 2008. Changes in antioxidant properties and their relationship to paclobutrazol-indued flooding tolerance in Welsh Onion. Journal of the Sciene of Food and Agriculture, 88: 1222-1230. 51
Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-2910
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Tokat Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi Yayın Ofisi