Kuşburnu Pulpunun Kızılötesi Işınım İle İnce Tabaka Kurutulması

Bu çalışmada, kuşburnu meyvesinden üretilen pulpun kızılötesi ışınım ile ince tabaka kurutulması işlemi gerçekleştirilmiş ve farklı matematiksel modeller kullanılarak kuruma davranışını en iyi ifade eden model belirlenmiştir. Farklı modellerin kuruma verilerine uygunluğu regresyon katsayısı (R2), düzeltilmiş regresyon katsayısı (düz.-R2), ortalama hata kareleri karekökü (RMSE) ve ki-kare (χ2) değerleri hesaplanıp, deneysel verilerle modelden tahminlenen verilerin karşılaştırılması ile belirlenmiştir. Ayrıca farklı sıcaklıklarda (50, 60, 70, 80 ve 90°C) kızılötesi ışınım ile kurutulan kuşburnu pulpunun difüzyon katsayıları ve aktivasyon enerjisi hesaplanmıştır. Uygulanan tüm sıcaklıklarda elde edilen deneysel verilere en yakın sonuçları veren modelin Midilli ve ark. modeli olduğu tespit edilmiştir. Difüzyon katsayısı değerlerinin 2.19x10-10 – 1.46x10-9 m2/s aralığında değiştiği belirlenmiş ve aktivasyon enerjisi 47.91 kJ/mol olarak hesaplanmıştır.

___

  • Akhondi E, Kazemi A and Maghsoodi V (2011). Determination of a suitable thin layer drying curve model for saffron (Crocus sativus L.) stigmas in an infrared dryer. Scientia Iranica, 18(6): 1397-1401.
  • Alibaş İ (2012). Asma yaprağının (Vitis vinifera L.) mikrodalga enerjisiyle kurutulması ve bazı kalite parametrelerinin belirlenmesi. Tarım Bilimleri Dergisi, 18(1): 43-53.
  • Avhad MR and Marchetti JM (2016). Mathematical modelling of the drying kinetics of Hass avocado seeds. Industrial Crops and Products, 91: 76-87.
  • Azeredo H, Brito ES, Moreira GE, Farias VL and Bruno LM (2006). Effect of drying and storage time on the physico‐chemical properties of mango leathers. International Journal of Food Science and Technology, 41(6): 635-638.
  • Celma AR, Rojas S and Lopez-Rodriguez F (2008). Mathematical modelling of thin-layer infrared drying of wet olive husk. Chemical Engineering and Processing: Process Intensification, 47(9): 1810-1818.
  • Crank J (1979). The mathematics of diffusion. Oxford university press, London.
  • Çakmak H, Kumcuoglu S and Tavman S (2013). Thin layer drying of bay leaves (Laurus nobilis L.) in conventional and microwave oven. Akademik Gıda, 11(1): 20-26.
  • Das I, Das SK and Bal S (2004). Drying performance of a batch type vibration aided infrared dryer. Journal of Food Engineering, 64(1): 129-133.
  • Erbay Z and Içier F (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5): 441-464.
  • Erenturk S, Gulaboglu MS and Gultekin S (2004). The thin-layer drying characteristics of rosehip. Biosystems Engineering, 89(2): 159-166.
  • Fasina OO, Tyler B and Pickard M (1997). Infrared heating of legume seeds effect on physical and mechanical properties. ASAE Meeting Presentation, Mirmeapolis Minnesota.
  • Fortes M and Okos RM (1981). Non-equilibrium thermodynamics approach to heat and mass transfer in corn kernels. Transactions of the ASAE, 24(3): 761-769.
  • Goyal RK, Kingsly ARP, Manikantan MR and Ilyas SM (2007). Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer. Journal of Food Engineering, 79(1): 176-180.
  • Güneş M (2008). Pomological and phonological characteristics of promising rose hip (Rosa spp.) genotypes. Gaziosmanpasa University, Agricultural Faculty, Department of Horticulture, Tokat, Turkey, 12.
  • Ibanoğlu Ş and Maskan M (2002). Effect of cooking on the drying behaviour of tarhana dough, a wheat flour–yoghurt mixture. Journal of Food Engineering, 54(2): 119-123.
  • Karel M and Saguy I (1991). Effects of water on diffusion in food systems. in: Water Relationships in Foods. Editor Harry Levine and Louise Slade. Publ. by Springer Science+Business Media. 157-173.
  • Kutlu N, İşçi A ve Demirkol ÖŞ (2015). Gıdalarda ince tabaka kurutma modelleri. Gıda, 40(1): 39-46.
  • Madamba PS, Driscoll RH and Buckle KA (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1): 75-97.
  • Maskan A, Kaya S and Maskan M (2002). Hot air and sun drying of grape leather (pestil). Journal of Food Engineering, 54(1): 81-88.
  • Midilli A, Küçük H and Yapar Z (2002). A new model for single-layer drying. Drying Technology, 20(7): 1503-1513.
  • Miranda M, Maureira H, Rodriguez, K and Vega-Galvez A (2009). Influence of temperature on the drying kinetics-physicochemical properties and antioxidant capacity of Aloe vera gel. Journal of Food Engineering, 91: 297-304.
  • Mongpraneet S, Abe T and Tsurusaki T (2002). Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering, 55(2): 147-156.
  • Nowak D and Lewicki PP (2005). Quality of infrared dried apple slices. Drying Technology, 23(4): 831-846.
  • Nozad M, Khojastehpour M, Tabasizadeh M, Azizi M, Ashtiani SHM and Salarikia A (2016). Characterization of hot-air drying and infrared drying of spearmint (Mentha spicata L.) leaves. Journal of Food Measurement and Characterization, 1(8): 466-473.
  • Orrego CE, Salgado N and Botero, CA (2014). Developments and trends in fruit bar production and characterization. Critical Reviews in Food Science and Nutrition, 54(1): 84-97.
  • Özbek B and Dadalı G (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering, 83(4): 541-549.
  • Özdemir F, Aksu Mİ ve Sebahattin NAS (1997). Isıl işlemsiz elde edilen kuşburnu pulplarından farklı pulp/şeker oranlarında üretilen marmelatların kalite özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 3(2): 353-358.
  • Özdemir M and Devres YO (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42(4): 225-233.
  • Özkoç S (2010). Kızılötesi ve kızılötesi-kombinasyon ısıtma teknolojilerinin gıda işleme uygulamalarında kullanımı. Gıda, 35(3): 211-218.
  • Pawar SB and Pratape VM (2015). Fundamentals of infrared heating and its application in drying of food materials: A review. Journal of Food Process Engineering, 40(1): 1-15.
  • Riadh MH, Ahmad SAB, Marhaban MH and Soh AC (2015). Infrared heating in food drying: An overview. Drying Technology, 33(3): 322-335.
  • Sawai J, Nakai T, Hashimoto A and Shimizu M (2004). A comparison of the hydrolysis of sweet potato starch with β‐amylase and infrared radiation allows prediction of reducing sugar production. International Journal of Food Science and Technology, 39(9): 967-974.
  • Sharaf-Eldeen YI, Blaisdell JL and Hamdy MY (1980). A model for ear corn drying. Transactions of the ASAE 23(5): 1261-1265.
  • Sharma GP and Prasad S (2004). Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. Journal of Food Engineering, 65(4): 609-617.
  • Sharma, GP, Verma RC and Pathare PB (2005). Thin-layer infrared radiation drying of onion slices. Journal of Food Engineering, 67(3): 361-366.
  • Sun J, Hu X, Zhao G, Wu J, Wang Z, Chen F and Liao X (2007). Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying. Food Science and Technology international, 13(2): 91-97.
  • Toğrul H (2006). Suitable drying model for infrared drying of carrot. Journal of Food Engineering, 77(3): 610-619.
  • Verma LR, Bucklin RA, Endan JB and Wratten FT (1985). Effects of drying air parameters on rice drying models. Transactions of the American Society of Agricultural Engineers, 28(1): 296-301.
  • Wang CY and Singh RP (1978). A single layer drying equation for rough rice. American Society of Agricultural Engineers, St. Joseph, MI, 78, 3001.
  • Wang Z, Sun J, Liao X, Chen F, Zhao G, Wu J and Hu X (2007). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1): 39-46.
  • Yamankaradeniz R (1983). Kuşburnu (Rosa sp.) değerlendirme olanakları. Gıda, 8(4): 157-162.
  • Zhu A and Xinqi S (2014). The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer, 72: 345-351.