Katı Kültür Fermantasyon Tekniği ile Streptomyces sp. TEM25'ten Ksilanaz Üretimi

Bu çalışmada, endüstriyel ve biyoteknolojik alanda geniş yer tutan ksilanaz enzimi üretimi için yeni gen kaynakları araştırılmış ve üretim koşulları optimize edilerek enzim üretim verimi arttırılması amaçlanmıştır. Bu nedenle, katı kültür ve batık kültür fermantasyonu teknikleri karşılaştırılmış, fermantasyon için başlangıç inokülasyon şekli ve miktarı optimize edilmiş ve nemlendirme oranının enzim üretim verimine etkisinin belirlenmesi hedeflenmiştir. Topraktan izole edilen 49 Aktimoniset izolatı içinden, en iyi ksilanaz üretici olarak belirlenen Streptomyces TEM 25 straininden ksilanaz üretiminin en iyi buğday kepeği kullanılarak yapılan katı kültür fermantasyonunda gerçekleştiği tespit edilmiştir. Katı kültür fermantasyon koşulları optimize edilerek ksilanaz enzim aktivitesi yaklaşık 1,5 kat arttırılmış ve %66,6 nemlendirme koşullarında 45,85 ±1.22 U/g kepek enzim aktivitesine ulaşıldığı belirlenmiştir. Amonyum sülfat çöktürme yöntemi ile kısmi saflaştırılan enzimin spesifik aktivitesi 5 kat artırılmıştır.

Xylanase Production from Streptomyces sp. TEM25 by Solid State Fermentation

In this study, new gene sources for the production of xylanase enzyme, which occupies a large area in industrial and biotechnological field, were investigated and optimization of production conditions was aimed to increase enzyme production efficiency. For this reason, the techniques of solid state fermentation and submerged fermentation were compared, the initial inoculation type and amount were optimized and the effect of humidification rate on the efficiency of enzyme production was determined. From 49 Actinomycetes strains isolated from soil, it was determined that xylanase production from Streptomyces TEM 25, which was identified as the best xylanase producer, was best performed in solid culture fermentation using wheat bran. After the optimization of the solid state fermentation conditions, xylanase activity was increased 1.5 fold to 45.85 ±1.22 U/g wheat bran under 66.6% moistened conditions. The specific activity of the partially purified enzyme was increased 5-fold by the ammonium sulfate precipitation method.

___

  • Aygan A (2008). Haloalkalofil Bacillus sp. izolasyonu, amilaz, selülaz ve ksilanaz enzimlerinin üretimi, karakterizasyonu ve biyoteknolojik uygulamalarda kullanılabilirliği. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yayımlanmış, Doktora Tezi, Adana.
  • Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000). Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. Journal of Industrial Microbiology and Biotechnology 24(6): 396-402.
  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
  • Cadirci BH, Yasa I and Kocyigit A (2016) Streptomyces sp. TEM 33 possess high lipolytic activity in solid state fermentation in comparison with submerged fermentation. Preparative Biochemistry and Biotechnology 46(1):23-29.
  • Fedorova TV, Chulkin AM., Vavilova EA, Maisuradze IG, Trofimov AA, Zorov IN, Khotchenkov VP, Polyakov KM, Benevolensky SV, Koroleva OV and Lamzin VS (2012). Purification, biochemical characterization, and structure of recombinant endo- 1,4-b-xylanase XylE. Biochemistry (Moscow) 77 (10): 1433-1442.
  • Kalim B, Böhringer N, Ali N and Schäberle TF (2015). Xylanases-from microbial origin to industrial application. British Biotechnology Journal 7(1): 1-20.
  • Kang MK, Maeng PJ, Rhee YH (1996). Purification and characterization of two xylanases from alkalophilic Cephalosporium sp. strain RYM-202. Applied and Environmental Microbiology 62: 3480-3482.
  • Kavya V, Padmavathi T (2009). Optimization of growth conditions for xylanase production by Aspergillus niger in solid state fermentation. Polish Journal of Microbiology 58(2):125-30.
  • Linden T and Hahn-Hagerdal B (1989). Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase. Enzyme and Microbial Technology 11: 583-589.
  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31: 426-428.
  • Mitchell D and Berovic M (1998). Solid state fermentations. in: Bioprocess Engineering Course, Ed. M. Berovic, National Institute of Chemistry, Slovenia, 128- 167.
  • Nelson N (1944). Nelson's method for quantitative determination of reducing power of carbohydrates. Journal of Biological Chemistry, 153: 375-380.
  • Park YK and Toma M (1974) Inter relation between microbial xylanase and glucose isomerase production. Journal of General and Applied Microbiology 20: 67- 69.
  • Sargın S ve Öngen G (2003). Kanatlı yemi katkısı olarak kullanılan ksilanaz enziminin katı kültür fermantasyon yöntemi ile üretiminde ölçek büyütme çalışmaları. Ege Üniversitesi Ziraat Fakültesi Dergisi, 40(3): 145-152.
  • Singh RP, Dwivedi P, Vivekanand and Kapur N (2007). Xylanases: Structure, Molecular Cloning and Regulation of Expression. in: Lignocellulose
  • Biotechnology: Future Prospects. Ed. R.C. Kuhad and Singh A., I.K. International Publishing House, New Delhi, India, 149-161.
  • Souza DF, Souza CGM and Peralta RM (2001). Effect easily metabolizable sugars in the production of xylanase by Aspergillus tamarii in solid state fermentation. Process Biochemistry, 36: 835-838.
Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-2910
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Tokat Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi Yayın Ofisi