Investigation of Haematococcus Pluvialis for Microalgae Cultivation Using the Flashing Light Method

Bu çalışmada, biyoyakıt üretimine uygunluk, yağ oranı miktarının fazla olması, kolay bulunabilirlik ve kontaminasyona dayanıklılık gibi faktörler göz önüne alınarak, Chlorophyta sınıfına ait Haematococcus pluvialis mikroalg türü seçilmiştir. İncelenmeye alınan bu türün; flashing (yanıp sönen) yöntemi ile zamana dayalı voltaj, voltaja bağlı ışık yoğunluğu kalibrasyon çalışması ve zamana bağlı hücre yoğunluğundaki artış miktarları belirlenmiştir. Deneme yönteminde yapılan voltaj kalibrasyon çalışmaları sonucunda flashing uygulaması ışık şiddeti 850 µE.m-2s-1olarak belirlenmiştir. Sürekli ve eş yoğunlukta ışık şiddeti uygulayabilmek için FMT-150 tipi fotobiyoreaktör kullanılmış ve mikroalg türünün fotobiyoreaktöre verildiği ilk gün 350 mg.ml-1hücre sayımı yapılmıştır. Başlangıç süreci ile birlikte her 48 saatte bir 25oC sabit sıcaklıkta hücre sayımları yapılarak büyüme süreci incelenmiştir. Tüm parametreler uygulandıktan sonra 350 mg.ml-1hücre yoğunluğuna sahip Haematococcus pluvialis türü 32. günün sonuna kadar büyüme eğilimi göstermiştir. En yüksek hücre sayısına 32. günde 565 mg.ml-1 ile ulaşılırken, 32. günden sonra populasyonda düşme görülmeye başlanmış, 38. günde deneme sonlandırılmıştır.

Mikroalg Üretimi İçin Haematococcus Pluvialis Türünün Flashing Yöntemi ile İncelenmesi

In view of factors such as their suitability for biofuel production, high oil content, easy accessibility and resistance to contamination, Haematococcus pluvialis species of Chlorophyta class was the choice of microalgae selected for this study. Time-based voltage, voltage-based light intensity calibration study and the amount of increase in cell concentration in time have been specified using the flashing method for the examined species. As a result of voltage calibration studies conducted under the trial method, light intensity for flashing practice was detected as 850 µE.m-2s-1. In order to apply light intensity continuously and at an equivalent level, a FMT-150 photobioreactor was employed and on the first day when the microalgae species was introduced into the photobioreactor, a cell count of 350 mg.ml-1 was obtained. The growth process was examined through the cell counts carried out every 48 hours, including the initial phase, under a constant temperature of 25oC. Having applied all these parameters, the Haematococcus pluvialis species, which had a cell concentration of 350 mg.ml-1, displayed a tendency to grow until the end of the 32th day. While the highest number of cells was reached on the 32nd day with 565 mg.ml-1, the population started to decline after the 32nd day, and the trial was terminated on the 38th day.

Kaynakça

Chisti Y (2007). Biodiesel from microalgae. Biotechnology Advances. Vol:25, pp: 294 - 306.

Demirbaş A (2010). Use of algae as biofuel sources. Journal of Energy Conversion and Management, Volume 51, pp: 2738-2749.

Eliçin AK, Kılıçkan A. ve Avcıoğlu AO (2009). Mikroalglerden biyodizel üretimi. 25. Tarımsal Mekanizasyon Ulusal Kongresi Bildiri Kitabı, Sayfa 273-278, Isparta. (In Turkish).

Eliçin AK, Koç C, Gezici M ve Gürhan R (2013). Biyoyakıt amaçlı Nannochloropsis salina mikroalg türünün bazı yetiştirme parametrelerinin belirlenmesi. Tarım Makinaları Bilimi Dergisi, Sayı: 9(2), sayfa: 99- 107. (In Turkish).

İlgi, KK ve Şebnem A (2007). Sürekli işletilen algfotobiyoreaktör sisteminde atık sudan azot giderimi. 7. Ulusal Çevre Mühendisliği Kongresi Bildiri Kitabı, Sayfa 267-273, İzmir. (In Turkish).

Johnson MB and Wen Z (2009). Production of biodiesel fuel from the microalgae Schizochytrium limacinum by direct transesterification of algal biomass. Journal of Energy Fuels, pp. 79-83.

Lababpour A, Hada K, Shimahara K, Katsuda T and Katoh S (2004). Effects of nutrient supply methods and illumination with blue light emitting diodes (LEDs) on astaxanthin. Journal of Bioscience and Bioengineering, Vol:98, Issue:6, pp: 452-456.

Metting B and Pyne JW (1986). Biologically active compounds from microalgae. Enzyme and Microbial Technology, Vol: 8, pp:386-94.

Naz M ve Gökçek K (2006). Fotobiyoreaktörler; fototropik mikroorganizmalar için alternatif üretim sistemleri. Ulusal Su Günleri Bildiri Kitabı, 6-8 Ekim, İzmir. (In Turkish).

Richmond A (2004). Handbook of microalgal mass culture: Biotechnology andapplied phycology. Blackwell.

Scragg AH, Ilman AM, Carden A and Shales SW (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Journal of Biomass and Bioenergy, Vol:23, pp: 67-73.

Sforza E, Bertucco A, Morosinotto T and Giacometti GM (2010). Vegetal oil from microalgae: species selection and optimization of growth parameters. Chemical Engineering Transactions, Vol: 20, pp:199-204.

Tapan D (2006). Çevre koşullarının bazı mikroalg türlerinin büyümesi üzerine etkisinin araştırılması. Ege Üniversitesi Fen Bilimleri Enstitüsü Yüksek lisans tezi. (Yayımlanmamış) (In Turkish).

Tawfiq SA, Suad AH and Jacob DA (2004). Optimum culture conditions required for the locally isolated Dunaliella salina. Journal of Algal Biomass Utilization, Vol: 1(2), pp: 12-19.

Utex (2011). The University of Texas at Austin, Culture Collection of algae. http://www.sbs.utexas.edu /utex/serch.apx/Search=dunaliella+salina). Erişim tarihi: 21.11.2011.

Xu H, Miao X and Wu Q (2006). High quality biodiesel production from a microalgae chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology.Volume 126, pp: 499-507.

Z-Hun K, Sun-Hyung K, Ho-Sang L and Choul-Gyun L (2005). Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis. Enzyme and Microbial Technology, Vol: 39, pp: 414-419.

Kaynak Göster

  • ISSN: 1300-2910
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985

10.6b6.3b