Beyaz, Siyah ve Yeşil Çay Kullanılarak Üretilen Kombuchaların Bazı Özelliklerinin Belirlenmesi

Kombucha; maya ve asetik asit bakteri türleri arasındaki simbiyotik ilişkiye bağlı olarak şekerli çayın fermantasyonuyla üretilen bir içecektir. Bu çalışmada beyaz, siyah ve yeşil çay kullanılarak üretilen kombucha içeceklerinin pH’sı, toplam asitlik, alkol, toplam fenolik madde miktarları, kafein ve bazı bireysel fenolik bileşik içerikleri belirlenmiştir. Beyaz, siyah ve yeşil çay içeren kombuchaların fermantasyon sonrası pH değerleri sırasıyla 3,11; 3,22; 3,16 toplam asitlik (% asetik asit) miktarları ise 8,9; 9,2; 9,0 olarak saptanmıştır. Beyaz çayla üretilen kombuchanın toplam fenolik madde miktarı 736,1 mg GAE/L olup diğer kombuchalara göre daha yüksek miktarda tespit edilmiştir. Kombucha örneklerinde analizi yapılan bileşiklerden en yüksek miktarda bulunan kafein olarak belirlenmiştir. Beyaz çay kullanılarak üretilen kombuchaların gallik asit (4,76±1,06 mg/L), kafein (63,47±4,64 mg/L) ve epikateşin (1,59±0,06 mg/L) miktarları yeşil ve siyah çay kullanılarak üretilen kombuchalardan daha yüksek miktarda saptanmıştır

___

  • AOAC (2005). Official Methods of Analysis. Edited W. Horwitz (18th ed.). Association of Official Analytical Chemists, Gaithersburg, USA.
  • Battikh H, Chaieb K, Bakhrouf A and Ammar E (2013). Antibacterial and antifungal activities of black and gren kombucha teas. Journal of Food Biochemistry, 37: 231–236.
  • Bhattacharya S, Gachhui R and Sil PC (2013). Effect of kombucha, a fermented black tea in attenuating oxidative stres mediated tissue damage in alloxan-induced diabetic rats. Food Chem Toxicol, 60: 328–340.
  • Blanc PJ (1996). Characterization of TheTea Fungus Metabolites. Biotechnology Letters, 18: 139–142.
  • Bauer-Petrovska B and Petrushevska-Tozi L (2000). Mineral and water soluble vitamin content in the Kombucha drink. International Journal of Food Science and Technology, 35: 201–205.
  • Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D and Gachhui R (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220: 63–72.
  • Chen C and Liu BY (2000). Changes in Major Components of Tea Fungus Metabolites During Prolonged Fermentation. J Appl. Microbiol, 89(5): 834-9.
  • Chu SC and Chen C (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98: 502–507.
  • Dufresne C and Farnworth E (2000). Tea, Kombucha, and health: a review. Food Research International, 33: 409-421.
  • El-Taher EM (2011). Kombucha: A new microbial phenomenon and industrial benefits. African J. Biol. Sci. 7(2): 41-60.
  • Essawet NA, Cvetkovic D, Velicanski A, Canadanovic-Brunet J, Vulic J, Maksimovic V and Markov S (2015). Polyphenols and antioxidant activities of Kombucha beverage enriched with Coffeberry extract. Chem. Ind. Chem. Eng. Q,. 21 (3): 399−409.
  • Goh WN, Rosma A, Kaur B, Fazilah A, Karim AA and Rajeev B (2012). Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal, 19 (1): 109-117.
  • Greenwalt CJ, Ledford RA and Steinkraus KH (1998). Determination and characterization of the anti-microbial activity of the fermented tea Kombucha. LWT Food Sci Technol, 31: 291–296.
  • Hilal Y and Engelhardt U (2007). Characterisation of white tea – Comparison to green and black tea. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2: 414–421.
  • Hoon LY, Choo C, Watawana MI, Jayawardena N and Waisundara NY (2014). Kombucha ‘tea fungus’ enhances the tea polyphenol contents, antioxidant activity and alpha-amylase inhibitory activity of five commonly consumed teas. Journal of Functional Foods, 1: 1-9.
  • Jayabalan R, Marimuthu S and Swaminathan K (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102: 392–398.
  • Jayabalan R, Subathradevi P, Marimuthu S, Satishkumar M and Swaminathan K (2008). Changes in Free-Radical Scavenging Ability of Kombucha Tea during Fermentation. Food Chemistry, 109: 227–234.
  • Jayabalan R, Chen PN, Hsieh YS, Prabhakaran K, Pitchai P, Marimuthu S, Thangaraj P, Swaminathan K and Yun SE (2011). Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells- Characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin. Indian Journal of Biotechnology, 10: 75-82.
  • Jayabalan R, Malbasa RV, Loncar ES, Vitas JS and Sathishkumar M (2014). A Review on KombuchaTea-Microbiology Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Comprehensive Reviews in Food Science and Food Safety, 13: 538-550.
  • Jayasundara JW, Phutela RP and Kocher GS (2008). Preparation of an Alcoholic Beverage from Tea Leaves. J. Inst. Brew, 114(2): 111–113.
  • Kaczmarczy D and Lochynsk S (2014). Products of biotransformation of tea infusion – properties and application. Pol. J. Natur. Sc., 29(4): 381–392.
  • Kallel L, Desseaux V, Hamdi M, Stocker P and Ajandouz E (2012). Insights into the fermentation biochemistry of kombucha teas and potential impacts of kombucha drinking on starch digestion. Food Res. Int., 49: 226-232.
  • Karori SM, Wachira FN, Ngure RM and Mireji PO (2014). Polyphenolic composition and antioxidant activity of Kenyan Tea cultivars. Journal of Pharmacognosy and Phytochemistry, 3(4): 105-116.
  • Kaur A, Kaur M, Kaur P, Kaur H, Kaur S and Kaur K (2015). Estimation and comparison of total phenolic and total antioxidants in gren tea and black tea. Global Journal of Bio-science and Biotechnology, 4(1): 116-120.
  • Khokhar S and Magnusdottir SGM (2002). Total phenol, catechin and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem.,50: 565–570.
  • Liang YR, Lu JL and Zhang LY (2002). Comparative Study Of Cream İn İnfusions Of Black Tea And GreenTea [Camellia Sinensis (L.) O. Kuntze]. J Food Sci Technol., 37: 627–634.
  • Lin JK, Lin CL, Liang YC, Lin-Shiau SY and Juan IM (1998). Survey of catechins, gallic acid and methylxanthines in green, oolong, pu-erh and black teas. J. Agric. Food Chem., 46: 3635–3642.
  • Loncar ES, Malbasa RV and Kolarov LA (2001). Metabolic activity of tea fungus on molasses as a source of carbon. Acta Periodica Technologica, 32: 21–26.
  • Loncar E, Djuric M, Malbasa R, Kolarov LJ and Klasnja M (2006). Influence of Working Conditions upon Kombucha Conducted Fermentation of Black Tea. Food Bioprod Process,84: 186-192.
  • Maghsoudi H and Mohammadi HB (2009). The effect of kombucha on post-operative intra-abdominal adhesion formation in rats. Indian J Surg., 71: 73–77.
  • Malbasa R, Loncar E and Djuric M (2008). Comparison of the products of Kombucha fermentation on sucrose and molasses. Food Chem., 106: 1039–1045.
  • Malbasa RV, Loncar ES, Vitas JS and Canadanovic-Brunet JM (2011). Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry, 127: 1727–1731.
  • Mayser P, Fromme S, Leitzmann C and Grunder K (1995). The yeast spectrum of “tea fungus Kombucha”. Mycodes, 38: 289–95.
  • Ribereau-Gayon P, Dubourdieu D, Doneche B and Lonvaud A (2006). The Microbiology of Wine and Vinifications. Wiley, 495, France.
  • Ough CS and Amerine MA (1988). Methods Analysis of Musts and Wines. Wiley, 400.
  • Perati PP, De Borba BM and Rohrer JS (2011). Rapid Separation of Catechins in Tea Using Core-Shell Columns. Thermo Fisher Scientific, Sunnyvale, CA, USA.
  • Pereira VP, Knor FJ, Vellosa JCR and Beltrame FL (2014). Determination of phenolic compounds and antioxidant activity of green, black and white teas of Camellia sinensis (L.) Kuntze, Theaceae. Revista Brasileira de Plantas Medicinais, 16(3): 490-498.
  • Ribereau-Gayon P, Dubourdieu D, Doneche B and Lonvaud A (2006). The Microbiology of Wine and Vinifications. Wiley, 495, France.
  • Shenoy KC (2000). Hypoglycemic activity of bio-tea in mice. Indian Journal of Experimental Biology, 38: 278–279.
  • Singleton VL, Orthofer R and Lamuela-Raventos RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteure agent. Methods in Enzymology, 299:152-178.
  • Srihari T and Satyanarayana U (2012). Changes in Free Radical Scavenging Activity of Kombucha during Fermentation. J. Pharm. Sci. and Res., 4(11): 1978 – 1981.
  • Sun TY, Li JS and Chen C (2015). Effects of blending wheat grass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of food and drug analysis, 23(4): 709:718.
  • Sreeramulu G, Zhu Y and Knol W (2000). Kombucha Fermentation and It’sAntimicrobial Activity. J Agric Food Chem, 48: 2589-2594.
  • Teoh AL, Heard G and Cox J (2004). Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology, 95: 119-126.
  • Velicanski AS, Cvetkovic DD, Markov SL, Saponjac VTS and Vulic JJ (2014). Lemon Balm Kombucha Antioxidant Activity. Food Technol. Biotechnol., 52(4): 420–429.
  • Wang Y, Ji B, Wu W, Wang R, Yang Z, Zhang D and Tian W (2013). Hepatoprotective effects of Kombucha tea: identification of functional strains and quantification of functional components. J Sci Food Agric, 94: 265-272.
  • Watawana MI, Jayawardena N, Gunawardhana CB and Waisundara VY (2015). Health, Wellness, and Safety Aspects of the Consumption of Kombucha. Journal of Chemistry, 2015: 1-11.
  • Yang ZW, Ji BP, Zhou F, Li B, Luo Y, Yang L and Li T (2009). Hypocholesterolaemic and antioxidant effects of kombucha tea in high-cholesterol fed mice. J Sci Food Agric,89: 150–156.