Bazı Ekmeklik Buğday Çeşitlerinde Fotoperiyodizm Geninin Moleküler Markörler ile Tespiti

Bitkilerde erkencilik, bitkiden ürünün erken elde edilmesinde, bitkilerin hasat sonrası karşılaşabileceği biyotik ve abiyotik streslere karşı kendini korumasında ve dolayısıyla bitkiden elde edilebilecek ürün miktarının da artışına neden olmaktadır. Fotoperiyodizm genleri, ekmeklik buğday türlerinin (Triticum aestivum L.) farklı çevresel koşullara adaptasyonunda önemli bir role sahiptir. Bu çalışmada, değişik coğrafi bölgelerden temin edilmiş ekmeklik buğday çeşitlerinde erkencilik genlerinden biri olan Ppd-D1a geni, PpdD1a moleküler markörü kullanılarak PCR analizleri ile incelenmiş ve buğday çeşitlerinin farklı iklimsel koşullara daha iyi adaptasyon sağlamaları açısından bu gene sahip genotiplerin seçilimi yapılmıştır. PCR analizi sonuçlarına göre, 32 farklı ekmeklik buğday çeşidinden 11 tanesinde beklenen büyüklükte (288bç) fragment elde edilmiştir. Bu çeşitlerin fotoperiyodizm ya da erkencilik geni olarak bilinen bu geni taşıdıkları düşünülmektedir. Bu çalışma sonucunda fotoperiyodizm genine sahip olduğu düşünülen buğday çeşitleri anaç olarak seçilerek yeni erkenci buğday çeşitlerinin geliştirilmesi hedeflenmektedir

Determination of Photoperiod-Response Gene in Some Bread Wheat Varieties by Molecular Markers

Early flowering facilitates early season resource capture avoiding reduced grain fill associated with late season biotic and abiotic stress, particularly in variable environments. Photoperiodism genes have an important role for environmental adaptation of bread wheat varieties (Triticum aestivum L.). In this study, bread wheat varieties obtained from different geographic regions were analyzed with marker assisted selection method using one of the earliness related genes Ppd-D1a with marker Ppd-D1a and were selected based on the marker for their adaptation of different environmental conditions. For that purpose, 32 different bread wheat varieties were analyzed with PCR and it was resulted amplicons with expected sizes of (288 bp) fragments in 11 varieties. Based on the PCR results, it is considered that these varieties include related photoperiodism gene and they will be selected as photoperiodism resistant parents and are planning to be used for further breeding studies

Kaynakça

Addisu M, Snape JM, Simmond JR and Gooding MJ (2010). Effects of reduced height (Rht) and photo period insensitivity (Ppd) alleles on yield of wheat in contrasting production systems. Euphytica, 172: 169-181.

Anonim (2012). Toprak Mahsülleri Ofisi Genel Müdürlüğü, Ankara.

Atlı A (1999). Buğday ve ürünleri kalitesi. Orta Anadolu’da hububat tarımının sorunları ve çözüm yolları sempozyumu, 8-11 Haziran 1999, Konya, s. 498-506.

Beales J, Turne A, Griffths S, Snape JW and Laurie DA (2007). A Pseudo-Response regulator is mis expressed in the photo period in sensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics,115: 721-733.

Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T and Langridge P (2012). Identification of novels quantitative trait loci for day stoear emergence and flag leaf glaucousnessin bread wheat (Triticum aestivum L.) population adapted to southern australia conditions. Theoretical and Applied Genetics, 124: 697-711.

Bentley AR, Horsnell R, Werner CP, Turner AS, Rose GA, Bedard C, Howell P, Wilhelm EP, Mackay IJ, Howells RM, Greenland A, Laurie DA and Gosman N (2013). Short, natural and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1(Ppd -1) alleles. Journal of Experimental Botany, 64(7): 1783-1793.

Bhardwaj G, Sarsar V, Tanwar RS, Selwal KK and Ahuja A (2012). Marker assisted screening for photo period responsive gene in wheat. International Journal of Research in Plant Science, 2(2): 35-38.

Diaz A, Zikhali M, Turner AS, Isaac P and Laurie DA (2012). Copy number variation affecting the photo period-B1 and vernalisation-A1 genesis associated with altered flowering time in wheat (Triticum aestivum L.). PLoS One 7, (3): e33234. DOI: 10.1371/ journal. pone.0033234.

Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15.

Dyck JA, Matus-Cadiz MA, Hucl P, Talbert L, Hunt T, Dubuc JP, Nass H, Clayton G, Dobb J and Quick J (2004). Agronomic performance of hard red spring wheat isoline sensitive and insensitive to photo period. Crop Science, 44: 1976-1981.

Guo Z, Song Y, Zhou R, Ren Z and Jia J (2009). Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytologist, 185: 841–851.

Kato K and Yokoyama H (1992). Geographical variation in heading characters among wheat landraces, Triticum aestivum L. and its implication for their adaptability. Theoretical and Applied Genetics, 84: 259-265.

Law CN, Sutka J and Worland AJ (1978). A genetic study of day-length response in wheat. Heredity, 41: 185-191.

Levy YY and Dean C (1998). The transition to flowering. The Plant Cell, 10: 1973-1989.

Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321- 4325.

Nishida H, Yoshida T, Kawakami K, Fuita M, Long B, Akashi Y, Laurie DA and Kato K (2012). Structural variationin the 5´ up stream region of photo period-I insensitive alleles Ppd-A1a and Ppd-B1a and their effection heading time. Molecular Breeding, 31: 27- 37.

Scarth R and Law CN (1983). The location of the photoperiod gene, Ppd2 and an additional Genetic factor for ear-emergence time on chromosome 2B of wheat. Heredity, 51(3): 607-619.

Seki M, Chono M, Nishimura T, Sato M, Yoshimura Y, Matsunaka H, Fujita M, Oda S, Kubo K, KiribuchiOtobe C, Kojima H, Nishida H and Kato K (2013).

Distribution of photo period-insensitive allele PpdA1a and its effection heading time in Japanese wheat cultivars. Breeding Science, 63: 309–316.

Worland AJ (1996). The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 89: 49-57.

Kaynak Göster

1136 591

Arşiv