Ön ve son iletimli paralel hibrit araçların bulanık mantık yöntemi ile kontrolü ve diğer güç sistemleri ile karşılaştırılması

Bu çalışmada, ön iletimli paralel hibrit, son iletimli paralel hibrit, seri hibrit ve konvansiyonel araç yapılarının Matlab/SIMULINK ortamında modellemesi yapılmıştır. Oluşturulan araç modelleri üzerinde farklı sürüş çevrimleri için ortalama yakıt tüketim değerleri elde edilerek karşılaştırması yapılmıştır. Paralel hibrit aracın güç, vites kademe ve rejeneratif fren kontrolü bulanık mantık yöntemi ile geliştirilen kontrol algoritması ile sağlanmıştır. Tüm araç yapıları için, aracın güç sistemini temsil eden transfer fonksiyonları oluşturulmuştur. Araca etki eden yuvarlanma, ivme ve aerodinamik kuvvetleri modele dahil edilmiştir. İçten yanmalı motor modelinde 1,8 litre “ZR-FXE” benzinli motora ait tork/devir ve özgül yakıt tüketimi haritası kullanılmıştır. Elektrik motor modelinde “Ashwoods/Elmo-D576” marka elektrik motorunun tork/devir ve verim haritasından faydalanılmıştır. Bütün araç yapılarında 7 ileri DCT şanzıman kullanılmıştır. Araçta 5 kWh enerji kapasiteli, liyum iyon batarya paketi kullanılmıştır. Eşdeğer devre yöntemi Rint metodu ile batarya modeli oluşturulmuştur. US06, FTP75, NEDC, EUDC sürüş çevrimleri için en düşük ortalama yakıt tüketimi değerlerinin bulanık mantık yöntemi ile kontrol edilen ön iletimli paralel hibrit araç yapısıyla 5,73, 4, 3,96 ve 4,18 L/100 km olarak elde edildiği belirlenmiştir. ECE15 sürüş çevriminde 3,62 L/100 km değeri ile seri hibrit araç yapısının en düşük ortalama yakıt tüketimine sahip olduğu tespit edilmiştir. Rejeneratif fren kullanımının en etkili olduğu ECE15 sürüş çevriminde, seri, ön iletimli paralel ve son iletimli paralel hibrit araç yapılarında sırasıyla % 14,22, % 11,5 ve % 9,95 oranında tasarruf sağladığı görülmüştür.

Control of pre and post transmission parallel hybrid vehicles with fuzzy logic method and comparison with other power systems

In this study, modeling of pre-transmission parallel hybrid, post- transmission parallel hybrid, serial hybrid and conventional vehicle structures in Matlab / SIMULINK environment. Average fuel consumption values for different driving cycles were obtained on the vehicle models created and compared. The power, gear range and regenerative brake control of the parallel hybrid vehicle were provided by the control algorithm developed by the fuzzy logic method. Transfer functions representing the vehicle's power system have been created for all vehicle structures. Rolling, acceleration and aerodynamic forces acting on the vehicle are included in the model. The torque / speed and specific fuel consumption map of the 1.8 liter “ZR-FXE” gasoline engine was used in the internal combustion engine model. In the electric motor model, the torque / speed and efficiency map of the “Ashwoods / Elmo-D576” brand electric motor was used. A 7-speed DCT transmission is used in all vehicle structures. The vehicle uses a 5 kWh energy capacity, lium ion battery pack. The battery model was created with the equivalent circuit method Rint method. It was determined that the lowest average fuel consumption values for US06, FTP75, NEDC, EUDC driving cycles were obtained as 5.73, 4, 3.96 and 4.18 L / 100 km with the pre-transmission parallel hybrid vehicle structure controlled by fuzzy logic method. In the ECE15 driving cycle, it was determined that the serial hybrid vehicle structure has the lowest average fuel consumption with a value of 3.62 L / 100 km. In the ECE15 driving cycle, where regenerative braking use is most effective, it has been observed that the series, pre-transmission parallel and post transmission parallel hybrid vehicle structures save 14.22%, 11.5% and 9.95% respectively.

___

  • Çiçek, A. ve Erdinç, O. , Charge Management of Electric Vehicle Parking Lot With PV-Battery Hybrid System, European Journal of Science and Technology, 15, 466-474, 2019.
  • Erdem, Y. ve Taci, S., Effect of regenerative braking and power analysis in electric vehicles. Journal of Current Researches on Engineering, Science and Technology, 4(2), 75-88, 2018.
  • Rende, H., Karaman, E. ve Altındal, E., Converting Clunker Vehicle to an Electric Vehicle, Engineer and Machinery, 58(688), 79-94, 2017.
  • Arabacı, E., Investigation of the power split mechanism in serialparallel hybrid electric vehicle depending on the engine speed variatıon, Omer Halisdemir University Journal of Engineering Sciences, 8(1), 394-404, 2019.
  • Keskin, A., Hybrid vehicle techonologies and their applications, Engineer and Machinery, 50(597), 12-20, 2009.
  • Shafiei, G., Carli, G. and Williamson, S. S., Electric and plug‐in hybrid electric vehicles. In: Power electronics for renewable energy systems, transportation and industrial applications, 387-421, 2014.
  • Ehsani, M., Gao, Y., Longo, S. and Ebrahimi, K., Modern electric, hybrid electric, and fuel cell vehicles. (3rd Ed.). Florida: CRC Press, 2018.
  • Kerem, A., Development of electric vehicle technology and future expectations, The Journal of Graduate School of Natural and Applied Sciences of Mehmet Akif Ersoy University, 5(1), 1-13, 2014.
  • Bayındırlı, C., Akansu, Y. E., Salman, M. S. ve Çolak, D., The numerical investigation of aerodynamic structures of truck and trailer combinations. International Journal of Automotive Engineering and Technologies, 4(3), 139-145, 2015
  • Çağatay-Bayındır, K., Gözüküçük, M. A. ve Teke, A., A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units. Energy Conversion and Management, 52(2), 1305-1313, 2011.
  • Khajepour, A., Fallah, M. S. and Goodarzi, A., Electric and hybrid vehicles: Technologies, modeling and control-A mechatronic approach. New Jersey: John Wiley & Sons, 2014.
  • Miller, J. M., Propulsion systems for hybrid vehicles (energy engineering). (2nd Ed.). Stevenage: The Institution of Engineering and Technology, 2004.
  • Finesso, R., Spessa, E. and Venditti, M., Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle. Applied Energy, 134, 573-588, 2014.
  • Amini, A., Başlamışlı, Ç., & İnce, B. C., Design of Energy Management Systems for Electric/Hybrid Buses with Optimal Control Methods: Case Study for the City of Ankara and Cost Analysis, 2017.
  • Malode, S. K. and Adware, R. H., Regenerative braking system in electric vehicles. International Research Journal of Engineering and Technology, 3(3), 294-400, 2016.
  • Tribioli, L. and Bella, G., Reduction of particulate emissions in diesel hybrid electric vehicles with a PMP-based control strategy. Energy Procedia, 148, 994-1001, 2018.
  • Ma, K., Wang, Z., Liu, H., Yu, H. and Wei, C., Numerical investigation on fuzzy logic control energy management strategy of parallel hybrid electric vehicle. Energy Procedia, 158, 2643-2648, 2019.
  • Ming, L., Energy management strategy of a plug-in parallel hybrid electric vehicle using fuzzy control. Energy Procedia, 105, 2660-2665, 2017.
  • Leikarnes, I. R., Modelling and simulating a hybrid electric vehicle. Master's Thesis, University of Norway, Faculty of Engineering Science and Technology, Norway, 2017.
  • İnternet: Ashwoods Electric Motors, ELMO - D576 Electric Motor Datasheet. Web: https://ashwoodselectricmotors.com/wp-content/uploads/2017/04/Axial-Flux-Permanent-Magnet-Motor-specification-sheet-ELMO-D576.pdf., Son Erişim Tarihi: 11.2019., 2017
  • Jimenez, D., Hernandez, S., Fraile-Ardanuy, J., Serrano, J., Fernandez, R. and Alvarez, F., Modelling the effect of driving events on electrical vehicle energy consumption using inertial sensors in smartphones. Energies, 11(2), 412, 2018.
  • Çetinkaya, S., Taşıt mekaniği. (8. Baskı). Ankara: Nobel Yayın Dağıtım, 2017. Yimin, G. and Ehsani, M., A torque and speed coupling hybrid drivetrain-architecture, control, and simulation. IEEE Transactions on Power Electronics, 21(3), 741-748, 2006.
  • Sezer, V., Modeling and optimal power management of a parallel hybrid electric vehicle. Master’s Thesis, Istanbul Technical University, Institute of Science and Technology, İstanbul, 2008.
  • Stroe, D.I., Zaharof, A.C. and Iov, F., Power and energy management with battery storage for a hybrid residential PV-wind system–a case study for Denmark. 12th International Renewable Energy Storage Conference, March 13-15, Germany, 2018.
  • İnternet: Sony Energy Devices Corporation Device Solutions Business Group, US18650VTC5 lithium ion rechargeable battery technical information. Web: https://landman.tech/wp-content/uploads/lijsten//bat-liion-lifepo4/70032-sony-us18650vtc5.pdf, Son Erişim Tarihi: 29.11.2019, 2013.
  • Boerboom, M., Electric vehicle blended braking maximizing energy recovery while maintaining vehicle stability and maneuverability. Master’s Thesis, Chalmers University Of Technology, Sweeden, 2012.
  • Hayes, J. G. and Goodarzi, G. A., Electric powertrain: Energy systems, power electronics and drives for hybrid, electric and fuel cell vehicles. New Jersey: John Wiley & Sons, 2017. Başlamışlı, S. Ç., Koçak, M., Bayramcan, İ. ve Testik, M. C., Driving cycles for Turkey: konya case study, 8. İnternational Automotive Techonologies Congress, Bursa, 2016.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ