MEMRİSTOR TEMELLİ SALLEN-KEY SÜZGEÇLER

Memristör 1971 yılında kuramsal olarak ortaya konmuş ve bundan yaklaşık 40 yıl sonra, 2008 yılında memristör davranışına sahip bir memristif sistem bulunmuştur. Memristör günümüzde yaygın biçimde dördüncü temel devre elemanı olarak kabul edilmektedir. Memristörün analog devreler alanında uygulamaları, üzerine artarak ilgi duyulan önemli bir çalışma alanıdır. Memristör temelli analog süzgeçler ayarlanabilir memristans özelliği sayesinde kazanç, değer katsayısı vb. süzgeç özelliklerinde klasik devre elemanları ile sağlanamayan otomatik ayarlanabilme özelliği getirmektedir. Bu çalışmada literatürde ilk kez alçak-geçiren ve yüksek-geçiren olmak üzere iki farklı tip memristör temelli Sallen-Key süzgeç analizi ve bunlara ilişkin benzetim sonuçları sunulmaktadır. Süzgeçler memristörün TiO2 doğrusal sürüklenme modeli temel alınarak tasarlanmış ve analiz edilmiştir. Çok düşük frekanslarda doyum durumunun oluştuğu gözlenmiş, daha yüksek frekanslarda ise her iki süzgeçte de başarım için bir sınırlama ortaya çıkmadığı belirlenmiştir. Memristör temelli Sallen-Key süzgeçlerin tasarımında kullanılmak üzere doyma ve buna karşılık bozulmanın ortaya çıkmamasına yönelik tasarım kriterleri verilmiştir. Verilen kriterler ve buna ilişkin uygun memristör parametreleri kullanıldığında düşük frekanslarda da süzgeçlerin gerekli başarım koşullarını yerine getirdiği gösterilmiştir. Analiz sonuçları ve verilen tasarım kriterleri memristör temelli Sallen-Key ve diğer tip süzgeçlerin tasarımlarında kullanılabilir.

MEMRİSTOR BASED SALLEN-KEY FILTERS

In 1971, memristor is claimed as a missing circuit element and almost 40 years later than its prediction a memristive system behaving as a memristor has been found in 2008. Memristor is accepted by many as the new and the fourth fundamental circuit element. Analog applications of memristor have emerged as a new research area in recent years. An analog filter with memristor can have automatically adjustable gain, quality factor and bandwidth characteristics etc. thanks to its variable memristance. In this paper, two different types of secondorder Sallen Key filters, which are the low-pass and the high-pass Sallen Key filters, are analyzed using simulations. The linear drift model of TiO2 memristor is used in all analysis and simulations. It has been found that the memristor in the filters can go into saturation at very low frequencies and both of the filters operate well at higher frequencies. A criterion is suggested to prevent memristor from going into saturation and to prevent distortion at low frequencies. Using the criteria and choosing a memristor with more appropriate parameters, the simulations are repeated for the low-pass filter and it is shown that the low-pass filter operates better with the new parameters chosen. The analysis and the criteria given in this paper can be used to design memristor-based Sallen-Key filters and adaptable to other memristor-based filters as well.

___

  • Chua, L.O., “Memristor - the missing circuit element”, IEEE Trans Circuit Theory, Cilt 18, No 5, 507-519, 1971.
  • Chua, L.O., Kang, S.M., “Memristive Devices and Systems”, Proceedings of the IEEE, Cilt 64, No 2, 209-223, 1976.
  • Strukov, D.B., Snider, G.S., Stewart, D.R. ve Williams, R.S., “The missing memristor found”, Nature, Cilt 453, 80-83, 2008.
  • Mutlu, R., “Solution of TiO2 memristor-capacitor series circuit excited by a constant voltage source and its application to calculate operation frequency of a programmable TiO2 memristor-capacitor relaxation”, Turk J Elec Eng & Comp Sci, 1-11, Published Online 2011, doi:10.3906/elk-1108-38.
  • Pershin, Y.V. ve Ventra, D.M., “Practical approach to programmable analog circuits with memristors”, IEEE Transactions on Circuits and Systems I: Regular Papers, Cilt 57, No 8, 1857-1864, 2010.
  • Shin, S., Kim, K., Kang S.M., “Memristor applications for programmable analog ICs”, IEEE Trans. on Nanotechnology, Cilt 10, No 2, 266-274, 2011.
  • Wey, T.A. ve Jemison, W.D., “Variable gain amplifier circuit using titanium dioxide memristors”, Circuits, Devices & Systems IET, Cilt 5, No 1, 59-65, 2011.
  • Yener, Ş.Ç. ve Kuntman, H., “Fully CMOS Memristor Based Chaotic Circuit”, Radioengineering, Cilt 23, No 4, 1140-1149, 2014.
  • Wang, W., Yu, Q., Xu, C. ve Cui, Y., “Study of filter characteristics based on PWL memristor”, In: International Conference on Communications, Circuits and Systems, ICCCAS, Milpitas, CA, 23-25 July 2009.
  • Driscoll, T., Quinn, J., Klein, S., Kim, H.T., Kim, B.J., Pershin, Y.V., Ventra, M.D. ve Bassov, D.N., “Memristive adaptive filters”, Applied Physics Letters, Cilt 97, No 9, 093502.1-093502.3, 2010.
  • Lee, T.W. ve Nickel, J.H., “Memristor resistance modulation for analog applications”, IEEE Electron Device Letters, Cilt 33, No 10, 1456-1458, 2012.
  • Chew, Z.J. ve Li, L., “Printed circuit board based memristor in adaptive lowpass filter”, Electronics Letters, Cilt 48, No 25, 1610-1611, 2012.
  • Ascoli, A., Tetzlaff, R., Corinto, F., Mirchev, M. ve Gilli, M., “Meristor-based filtering applications” In: 14th Latin American Test Workshop (LATW), Cordoba, 3-5 April 2013.
  • Quereshi, M.S., Medeiros-Ribeiro, W.Y.G. ve Williams, R.S., “AC sense technique for memristor crossbar”, Electronics Letters, Cilt 48, No 13, 757-758, 2012.
  • Mahvash, M. ve Parker, A.C., “A memristor SPICE model for designing memristor circuits”, In: 2010 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Seattle, WA, 1-4 Aug. 2010.
  • Sallen, R.P. ve Key, E.L., “A Practical Method of Designing RC Active Filters” IRE Transactions on Circuit Theory, Cilt 2, No 1, 74–85, 1955.
  • Zumbahlen, H., Linear Circuit Design Handbook, Newnes, Massachusetts, ABD, 2008.
  • Sedra, A.L. ve Smith, K.C., Microelectronic Circuits, Cilt 6, Oxford University Press, New York, ABD, 2004.
  • Rabin, R. ve Swamy M.N.S., Modern Analog Filter Analysis and Design A Practical Approach, WILEY-VCH Verlag & Co. KGaA, Weinheim, Almanya, 2010.