HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi

Homojen dolgulu sıkıştırma ile ateşlemeli (HCCI) motorların yüksek termik verimleri ve düşük NOx emisyonları sebebiyle buji ile ateşlemeli (SI) ve sıkıştırma ile ateşlemeli (CI) motorlara göre önemli üstünlükleri bulunmaktadır. Ancak HCCI motorlarda yanma başlangıcının kontrol edilmesi oldukça zordur. Bu çalışmada, dört silindirli SI motordan dönüştürülmüş olan bir HCCI motoru kullanılmıştır. 373 K hava giriş sıcaklığı için, emme manifold basıncının HCCI yanma üzerine etkileri deneysel olarak incelenmiştir. Deney yakıtı olarak RON0, RON20 ve RON40 kullanılmıştır. Manifold basıncının artmasıyla yanma başlangıcının avansa alındığı gözlenmiştir. Ayrıca oktan sayısının değişiminin de yanma başlangıcı üzerine önemli etkileri olduğu gözlenmiştir. En yüksek indike termik verim RON40 yakıtı kullanımında, 120 kPa manifold basıncında %46,38 olarak kaydedilmiştir. Manifold basıncının artırılmasına bağlı olarak volümetrik verimin de artması maksimum silindir içi basınç ve ısı yayılımında artış sağlamıştır.

Investigation of the Effects of Intake Manifold Pressure on Performance and Combustion Characteristics in an HCCI Engine

Homogeneous charge compression ignition (HCCI) engines have significant advantages over spark ignition (SI) and compression ignition (CI) engines due to their high thermal efficiency and low NOx emissions. However, it is difficult to control the start of combustion. In this study, the effects of the intake manifold pressure on HCCI combustion were investigated experimentally at 373 K intake temperature in a four cylinders HCCI engine, which was transformed from the SI engine. It was observed that there was an advance in the start of combustion as the manifold pressure increased. It was also observed that the change in octane number had significant effects on the start of combustion. The highest thermal efficiency was recorded as 46.38% at 120 kPa manifold pressure using RON40 fuel. The increase in the volumetric efficiency that depends on the increase in manifold pressure provided an increase in maximum cylinder pressure and heat release.

___

  • Iida M., Hayashi M., Foster D. and Martin J., Characteristics of homogeneous charge compression ignition (HCCI) engine operation for variations in compression ratio, speed and intake temperature while using n-butane as a fuel, Journal of Engineering for Gas Turbines and Power, 125(2), 472-478, 2003.
  • Yılmaz E., Solmaz H., Polat S. and Altın M., Effect of the three-phase diesel emulsion fuels on engine performance and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 28(1), 127-134, 2014.
  • Can O., Cinar C. and Sahin F., The investigation of the effects of premixed gasoline charge on HCCI-DI engine combustion and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 24(2), 229-236, 2009.
  • Nagareddy S., Temperature distribution measurement on combustion chamber surface of diesel engine-experimental method, International Journal of Automotive Science and Technology, 1(3), 8-11, 2017.
  • Sharma T. K., Rao G. A. P. and Madhumurthy K., Enhancement of rate of heat transfer in HCCI engine with induction induced swirl and under varying compression ratios and boost pressures, Journal of Mechanical Science and Technology, 29(10), 4545-4553, 2015.
  • Epping K., Aceves S. M., Bechtold R. L. and Dec J. E., The potential of HCCI combustion for high efficiency and low emissions, SAE Technical Paper, 2002-01-1923, 2002.
  • Sharma T. K., Rao G. A. P. and Madhumurthy K., Combustion analysis of ethanol in HCCI engine, Trends in Mechanical Engineering and Technology, 3(1), 1-10, 2012.
  • Yap D., Karlovsky J., Megaritis A., Wyszynski M. and Xu H., An investigation into propane homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping, Fuel, 84(18), 2372-2379, 2005.
  • Lu X., Hou Y., Zu L. and Huang Z., Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection, Fuel, 85(17), 2622-2631, 2006.
  • Megaritis A., Yap D. and Wyszynski M., Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping, Energy, 32 (12), 2396-2400, 2007.
  • Arcoumanis C., Bae C., Crookes R. and Kinoshita E., The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel, 87(7), 1014-1030, 2008.
  • Cinar C. and Uyumaz A., Cam design and manufacturing for a homogeneous charge compression ignition gasoline engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 29(1), 15-22, 2014.
  • Zhao H., HCCI and CAI engines for the automotive industry, Elsevier, 2007.
  • Cinar C., Uyumaz A., Solmaz H., Sahin F., Polat S. and Yilmaz E., Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels, Fuel Processing Technology, 130, 275-281, 2015.
  • He B. Q., Liu M. B. and Zhao H., Comparison of combustion characteristics of n-butanol/ethanol- gasoline blends in a HCCI engine, Energy Conversion and Management, 95, 101-109, 2015.
  • Solouk A., Shakiba-herfeh M., Kannan K., Solmaz H., Dice P., Bidarvatan M., Kondipati N. N. T. and Shahbakhti M., Fuel economy benefits of integrating a multi-mode low temperature combustion (LTC) engine in a series extended range electric powertrain, SAE Technical Paper, 2016-01-2361, 2016.
  • Haraldsson G., Tunestål P., Johansson B. and Hyvönen J., HCCI combustion phasing in a multi cylinder engine using variable compression ratio, SAE Technical Paper, 2002-01-2858, 2002.
  • Halis S., Nacak C., Solmaz H., Yılmaz E. and Yücesu H. S., Investigation of the effects of octane number on combustion characteristics and engine performance in a HCCI engine, Journal of Thermal Science and Technology, 38(2), 99-110, 2018.
  • Shaver G. M., Roelle M. and Gerdes J. C., Modeling cycle-to-cycle coupling in HCCI engines utilizing variable valve actuation, IFAC Proceedings Volumes, 37(22), 227-232, 2004.
  • Hamada K., Niijima S., Yoshida K., Shoji H., Shimada K. and Shibano K., The effects of the compression ratio, equivalence ratio and intake air temperature on ignition timing in a HCCI engine using DME fuel, SAE Technical Paper, 2005-32-0002, 2005.
  • Lu X. C., Chen W. and Huang Z., A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR: Part 1. The basic characteristics of HCCI combustion, Fuel, 84(9), 1074-1083, 2005.
  • Agrell F., Control of HCCI by aid of variable valve timings with specialization in usage of a non-linear quasi-static compensation, PhD diss., KTH, 2006.
  • Cinar C., Uyumaz A., Solmaz H. and Topgul T., Effects of valve lift on the combustion and emissions of a HCCI gasoline engine, Energy Conversion and Management, 94, 159-168, 2015.
  • Polat S., Kannan K., Shahbakhti M., Uyumaz A. and Yucesu H. S., An experimental study for the effects of supercharging on performance and combustion of an early direct injection HCCI engine, Second International Research Conference on Engineering, Science and Management, Dubai, 2015.
  • Polat S., Yucesu H. S., Kannan K., Uyumaz A., Solmaz H. and Shahbakhti M., Experimental comparison of different injection timings in an HCCI engine fueled with n-heptane, International Journal of Automotive Science and Technology, 1(1), 1-6, 2017.
  • Canakci M. and Reitz R. D., Experimental optimization of a DI-HCCI gasoline engine using split injections with fully-automated micro-genetic algorithms, International Journal of Engine Research, 4, 47-60, 2003.
  • Canakci M., An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine, Fuel, 87, 1503-1514, 2008.
  • Olsson J. O., Tunestal P. and Johansson B., Boosting for high load HCCI, SAE Technical Paper, 2004-01-0940, 2004.
  • Xu F., Wang Z., Yang D. B. and Wang J. X., Potential of high load extension for gasoline HCCI engine using boosting and exhaust gas recirculation, Energy & Fuels, 23, 2444-2452, 2009.
  • Bai G. and Ning H., Investigation of intake boost pressure effects on performance and exhaust exergy of a natural gas fueled HCCI combustion engine, International Journal of Engineering Innovations and Research, 7(2), 132-135, 2018.
  • Canakci M., Combustion characteristics of a DI-HCCI gasoline engine running at different boost pressures, Fuel, 96, 546-555, 2012.
  • Dec J. E. and Yang Y., Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline, SAE International Journal of Engines, 3(1), 750-767, 2010.
  • Arora J. K., Design of real-time combustion feedback system and experimental study of an RCCI engine for control, PhD diss., Michigan Technological University, 2016.
  • Liu H., Yao M., Zhang B. and Zheng Z., Effects of inlet pressure and octane numbers on combustion and emissions of a homogeneous charge compression ignition (HCCI) engine, Energy & Fuels, 22(4), 2207-2215, 2008.
  • Yao M., Zheng Z., Zhang B. and Chen Z., The effect of PRF fuel octane number on HCCI opeation, SAE Technical Paper, 2004-01-2992, 2004.
  • He B. Q., Liu M. B., Yuan J. and Zhao H., Combustion and emission characteristics of a HCCI engine fuelled with n-butanol-gasoline blends. Fuel, 108, 668-674, 2013.
  • Noguchi M., Tanaka Y., Tanaka T. and Takeuchi Y., A study on gasoline engine combustion by observation of intermediate reactive products during combustion, SAE Technical Paper, 1979-0840, 1979.
  • Heywood, J. B., Internal combustion engine fundamentals, McGraw-Hill, 1988.
  • Tsurushima, T., A new skeletal PRF kinetic model for HCCI combustion, Proceedings of the Combustion Institute, 32(2), 2835-2841, 2009.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

Kültürel mirasa yönelik mobil artırılmış gerçeklik uygulaması geliştirilmesi

Aktan ACAR, E. Melisa TUNCA, Murat Can ÇETİN, Şeyma Nur ÇALIŞKAN, Suna AYDIN ALTAY, Pelin GÜROL ÖNGÖREN, Ahmet Fatih KARAKAYA, F. Betül ATALAY, Soner SAY

Frekans tepkisi analizi ile güç transformatörü hatalarının değerlendirilmesinde istatistiksel yöntemlerin kullanılması

Selim KÖROĞLU, Mustafa YILDIZ, Akif DEMİRÇALI, Engin ÇETİN

QStE420TM çelik malzemelerin farklı bazik elektrodlar kullanılarak örtülü elektrodla ark kaynak yöntemiyle kaynaklanabilirliğinin araştırılması

Mustafa HARMAN, Hakan ADA, Cemil ÇETİNKAYA

Yaşlandırma işlemi öncesi uygulanan kriyojenik işlemin Ti-15V-3Al-3Sn-3Cr metastabil β titanyum alaşımının yorulma çatlak ilerlemesi davranışlarına etkisi

Nihal YUMAK, Kubilay ASLANTAŞ, Ahmet ÇETKİN

Su altı elektrodları ile yapılan kaynaklı birleştirmelerin mikro yapı ve mekanik özelliklerinin incelenmesi

Uğur GÜROL, Hakan BAYKAL, Nur Benuşe YILDIZ, Can YILMAZ, Ömür DANIŞKAN, Mustafa KOÇAK

Ağ trafiği analizi ile derin öğrenme tabanlı Android kötücül yazılım tespiti

Anıl UTKU

Nano kil parçacık ilavesinin bazalt elyaf takviyeli kompozit plakaların eksenel ve yanal burkulma özelliklerine etkisi

Mehmet BULUT, Özkan ÖZBEK, Ömer Yavuz BOZKURT, Ahmet ERKLİĞ

Rezonans dönüştürücülü hidrojen üretim sisteminin gerçekleştirilmesi

Salih NACAR, Selim ÖNCÜ

7075-T6 alüminyum alaşımının soğuk dövme simülasyonu için birleşik plastisite model parametrelerinin tespiti ve tersine analiz ile kalibrasyonu

İlyas KACAR, Süleyman KILIÇ

Ultra yüksek performanslı betonda çimento yerine cam tozu ve/veya yüksek fırın cürufunun kullanılabilirliği

Umut HASGÜL, Niyazi BIÇAKÇIOĞLU