GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR

Bu çalışmada, gözenekli maddelerin etken ısıl iletkenliğinin modellenmesine ve/veya tahminine yönelikliteratürde mevcut çalışmalar incelenmiştir. Bu çalışmalar, literatürde tespit edilen ve farklı uygulamalarıkapsayan bazı deneysel sonuçlar dikkate alınarak analiz edilmiştir. Sonuçlar tablo halinde verilmiş ve modeller,uygulanabilirlik aralığı, kullanım kolaylığı ile değişik parametrelerin etkileri açısından değerlendirilmiştir.Sonuçta genel olarak kullanılabilecek bağıntılar elde etmek yerine belirli yapılarda ve belirli gözeneklilikaralığında sınırlı bir hata töleransı ile kullanılabilecek bağıntıları seçmenin önem kazandığı ve özellikle yükseksıcaklığın etken ısıl iletkenliğine etkisinin çalışılması gerektiği sonucuna varılmıştır.

___

  • KAYNAKLAR (REFERENCES)
  • Bart, G. C. J., Thermal conduction in non
  • homogeneous and phase change media,
  • Doctoral Thesis, Delft University of Technology,
  • The Netherlands, 1994.
  • Pham, Q.T. ve Willix, J., “Thermal conductivity
  • of fresh lamb meat, offal and fat in the range -40
  • to +30 oC: measurements and correlations”, J.
  • Food Sci., 54 (3), 508–515,1989.
  • Singh, R.ve Kasana, H.S., “Computational aspects of
  • effective thermal conductivity of highly porous metal
  • foams”, Applied Thermal Engineering, 24, 1841–
  • , 2004
  • Tavman, I.H., “Effective Thermal Conductivity
  • of Isotropic Polymer Composites”, Int. Comm.
  • Heat Mass Transfer, 25(5), 723-732, 1998.
  • Belova, I.V. ve Murch, G.E., “Monte Carlo
  • Simulation of the Effective Thermal Conductivity
  • in Two-Pase Material”, Journal of Materials
  • Processing Technology, 153-154, 741-745,
  • -
  • Ochs, F., Heidemann, W. ve Müller-Steinhagen,
  • H., “Effective Thermal Conductivity of
  • Moistened Insulation Materials As A Function of
  • Temperature”, International Journal of Heat
  • and Mass Transfer, 51, 539–552, 2008.
  • Maqsood, A. ve Kamran, K., “Thermophysical
  • properties of porous sandstones: measurements
  • and comparative study of some representative
  • thermal conductivity models”, International
  • Journal of Thermophysics,; 26 (5), 1617-1631,
  • -
  • Cernuschi, F., Ahmaniemi, S., Vuoristo, P. ve
  • Mäntylä, T., “Modelling of thermal conductivity
  • of porous materials: application to thick thermal
  • barrier coatings”, Journal of the European
  • Ceramic Society, 24, 2657-2667, 2004.
  • Singh, K.J., Singh, R. ve Chaudhary, D.R., “Heat
  • conduction and a porosity correction term for
  • spherical and cubic particles in a simple cubic
  • packing”, J. Phys. D: Appl. Phys., 31, 1681–
  • , 1998.
  • Kohout, M., Collier, A.P. ve Štĕpánek, F.,
  • “Effective thermal conductivity of wet particle
  • assemblies”, International Journal of Heat and
  • Mass Transfer, 47, 5565–5574, 2004.
  • Chaudhary, D. R. ve Bhandari, R. C., “Heat transfer
  • through a three-phase porous medium”, Journal of
  • Physics D, British Journal of Applied Physics, 1,
  • –817, 1968.
  • Maxwell, J.C., A Treatise on Electricity and
  • Magnetism, third ed, Dover Publications Inc.,
  • New York, A.B.D., 1954.
  • Beck, A.E., “An improved method of computing
  • the thermal conductivity of fluid-filled
  • sedimentary rocks'”, Geophysics, 41, 133-144,
  • -
  • Carson, J. K., Lovatt, S. J., Tanner, D. J. ve
  • Cleland, A.C., “Thermal Conductivity Bounds for
  • Isotropic Porous Materials”, International
  • Journal of Heat and Mass Transfer,48, 2150-
  • , 2005.
  • Brailsford, A.D. ve Major, K.G., “The thermal
  • conductivity of aggregates of several phases,
  • including porous materials”, Br. J. Appl. Phys.,
  • , 313–319, 1964.
  • Carson, J. K., Lovatt, S.J., Tanner, D.J. ve
  • Cleland, A.C., “Predicting the effective thermal
  • conductivity of unfrozen, porous foods”, Journal
  • of Food Engineering, 75, 297–307, 2006.
  • Carson, J. K., “Review of effective thermal
  • conductivity models for foods”, International
  • Journal of Refrigeration, 29, 958-967, 2006.
  • Carson, J. K., Prediction of the thermal
  • conductivity of porous foods, PhD Thesis,
  • Massey University, Palmerston North, New
  • Zealand, 2002.
  • Carson, J. K., Lovatt, S. J., Taner, D.J. ve
  • Cleland, A.C., “An analysis of the influence of
  • material structure on the effective thermal
  • conductivity of theoretical porous materials using
  • finite element simulations”, International
  • Journal of Refrigeration, 26, 873–880, 2003.
  • Nielsen, L.E., Mechanical Properties of
  • Polymers and Composites, Vol. 2., Marcel
  • Dekker, New York, 1974.
  • Nielsen, L. E., “Thermal conductivity of
  • particulate-filled polymers”, J. Appl. Polym.
  • Sci., 17, 3819-3825, 1973.
  • Pezzotti, G., Kamada, I. ve Miki, S., “Thermal
  • conductivity of AlN/polystyrene interpenetrating
  • Networks”, Journal of the European Ceramic
  • Society, 20, 1197-1203, 2000.
  • Gonzo, E. E., “Estimating correlations for the
  • effective thermal conductivity of granular
  • materials”, Short communication, Chemical
  • Engineering Journal, 90, 299–302, 2002.
  • Ghodoossi, L., Hava Boşluklu Yapı
  • Elemanlarında Isı Geçişi, Master Tezi, İstanbul
  • Teknik Üniversitesi, Fen Bilimleri Enstitüsü,
  • Makine Mühendisliği Ana Bilimdalı, İstanbul,
  • , 1988.
  • Fu, S.-Y. ve Mai, Y.-W., “Thermal Conductivity
  • of Misaligned Short-Fiber-Reinforced Polymer
  • Composites”, Journal of Applied Polymer
  • Science, 88, 1497–1505, 2003.
  • Halpin, J.C., “Stiffness and expansion estimates
  • for oriented short fiber composites”, Journal of
  • Composite Materials, 3, 732–734, 1969.
  • Gemci, R., Lif takviyeli polimer kompozit
  • malzemelerde aşınma ve ısı iletimlerinin
  • iyileştirilmesi, Doktora Tezi, Uludağ
  • Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil
  • Mühendisliği Anabilim dalı, Bursa, 102, 1996.
  • Agarwal, B.D., Broutman L.J. Analysis and
  • Performance of Fiber Composites, John Wiley
  • and Sons, U.S.A., 1980.
  • Levy, F.L., “A modified Maxwell–Eucken
  • equation for calculating the thermal conductivity of two-component solutions or mixtures”,
  • International Journal of Refrigeration, 4(4),
  • –225, 1981.
  • Becker, B.R. ve Fricke, B.A., “Food
  • thermophysical property models”, Int. Comm.
  • Heat Mass Transfer, 26 (5), 627-636, 1999.
  • Wang, J., Carson, J.K., North, M.K. ve Cleland
  • D.J., “A New Approach to Modelling The
  • Effective Thermal Conductivity of
  • Heterogeneous Materials”, International
  • Journal of Heat and Mass Transfer, 49, 3075-
  • , 2006.
  • Landauer, R., “The electrical resistance of binary
  • metallic mixtures”, J. Appl. Phys., 23, 779–784,
  • -
  • Kirkpatrick, S., “Percolation and conduction”,
  • Reviews of Modern Physics, 45, 574–588, 1973.
  • Davis, H.T., Valencourt, L.R. ve Johnson, C.E.,
  • “Transport processes in composite media”, J.
  • Am. Ceram. Soc., 58, 446-452, 1975.
  • Xue, Q. ve Xu, W.-M., “A Model of Thermal
  • Conductivity of Nanofluids with Interfacial
  • Shells”, Materials Chemistry and Physics, 90,
  • –301, 2005.
  • Krischer, O., The scientific fundamentals of drying
  • technology, Springer-Verlag, Berlin, 1963.
  • Hamdami, N., Monteau, J.-Y. ve Le Bail, A.,
  • “Effective thermal conductivity of a high porosity
  • model food at above and sub-freezing
  • temperatures”, International Journal of
  • Refrigeration, 26, 809–816, 2003.
  • Maroulis, Z.B., Krokida, M.K. ve Rahman, M.S.,
  • “Astructural generic model to predict the
  • effective thermal conductivity of fruits and
  • vegetables during drying”, J. Food Eng., 52, 47–
  • , 2002.
  • De Vries, U., Sluimer, P.ve Bloksma, A.H., “A
  • quantitative model for heat transport in dough and
  • crumb during baking”, International Symposium
  • on Cereal Science and Technology, Lund
  • University, Ystad, Sweden, 174–88, 13–16 June
  • -
  • Russell, H.W., “Principles of Heat Flow in
  • Porous Insulators”, J. Am. Ceram. Soc., 18, 1-5,
  • -
  • Tseng, C., Yamaguchit, M.ve Ohmorit, T.,
  • “Thermal Conductivity of Polyurethane Foams
  • from Room Temperature to 20 K”, Cryogenics,
  • , 305-312, 1997.
  • Chiew, Y.C. ve Glandt, E., “The effect of
  • structure on the conductivity of a dispersion”, J.
  • Coll. Interf. Sci., 94, 90–104, 1983.
  • Francl, J. ve Kingery, W.D., “Thermal conductivity:
  • IX, Experimental investigation of effect of porosity
  • on thermal conductivity”, J. Am. Ceram. Soc., 37,
  • –107, 1954.
  • Sheldon, R.P., Composite polymeric materials,
  • Applied Science Publishers, London and New
  • York, 86-88, 1982.
  • Chawla, K.K., Composite Materials-Science and
  • Engineering, Springer-Verlag, 1987.
  • Ozilgen, M., Food Process Modeling and
  • Control: Chemical Engineering Applications,
  • CRC Press, 518, 1998.
  • Hill, J.E., Leitman, J.D. ve Sunderland, J.E.,
  • “Thermal conductivity of various meats”, Food
  • Technology, 21, 1143–1148, 1967.
  • Rizvi, S.S.H., Thermodynamic Properties in
  • Dehydration, Editör: Rao, M.A. ve Rizvi, S.S.H.,
  • Engineering Properties of Foods, Marcel Dekker,
  • Newyork, 531, 1994.
  • Ashrae Handbook, Refrigeration, American
  • Society of Heating, Refrigeration and Airconditioning
  • Engineers Inc., GA, Atlanta, 2002.
  • Rahman, M.S., Thermophysical properties of
  • foods, Editör: Sun, D.-W., Advances in food
  • refrigeration, Leatherhead Publishing, Surrey,
  • England, 2001.
  • Kopelman, I. J., Transient heat transfer and
  • thermal properties in food systems, Doktora
  • Tezi, Food Science Departmant, Michigan State
  • University, East Lansing, MI, U.S.A., 1966.
  • Jeffrey, D.J., “Conduction through a random
  • suspension of spheres”, Proc. R. Soc. Lond. A,
  • , 355–367, 1973.
  • Xue, Q.-Z., “Model for effective thermal
  • conductivity of nanofluids”, Physics Letters
  • A,307 (5-6), 313–317, 2003.
  • Bauer, T.H., “A general analytical approach
  • toward the thermal conductivity of porous
  • media”, Int. J. Heat Mass Transfer, 36, 4181–
  • , 1993.
  • Babanov, A.A., “Method of calculation of
  • thermal conduction coefficient of capillary
  • porous material”, Sov. Phys. Technol. Phys., 2,
  • –484, 1957.
  • Ye, Z., Wells, C.M., Carrington, C.G. ve Hewitt,
  • N.J., “Thermal Conductivity of Wool and Wool-Hemp
  • Insulation”, International Journal of Energy
  • Research, 30, 37-49, 2006.
  • Symons, J.G., Clarke, R.E. ve Pierce, J.V.,
  • “Thermal performance of several Australian
  • fibrous insulating materials”, Journal of
  • Thermal Insulation and Building
  • Envelopes,19, 72–88, 1995.
  • Kohout, M., Collier, A.P. ve Štĕpánek, F.,
  • “Microstructure and transport properties of wet
  • poly-disperse particle assemblies”, Powder
  • Technology, 156, 120–128, 2005.
  • Cheng, S.C. ve Vachon, R.I., "The Prediction of the
  • Thermal Conductivity of Two and Three Phase Solid
  • Heterogeneous Mixtures”, Int.J. Heat Mass
  • Transfer, 12, 249, 1969.
  • Agari, Y., Uno, T., “Estimation on Thermal
  • Conductivities of Filled Polymers”, J. Appl.
  • Polym. Sci., 32, 5705-5712, 1986.
  • Gori, F., “A Theoretical Model for Predicting the
  • Effective Thermal Conductivity of Unsaturated
  • Frozen Soils”, Proceedings of The 4th International Conference on Permafrost, vol.
  • , Editör: Péwé, T. L., Washington DC: National
  • Academy Press, Fairbanks, U.S.A., 363-368,
  • -
  • Gori, F., Marino, C. ve Pietrafesa, M., “Experimental
  • measurements and theoretical predictions of the
  • thermal conductivity of two phases glass beads”,
  • International communications in heat and mass
  • transfer, 28 (8), 1091-1102 (17), 2001.
  • Barea, R., Osendi, M.I., Ferreira, J.M.F. ve
  • Miranzo, P. “Thermal conductivity of highly
  • porous mullite material”, Acta Materialia, 53,
  • -3318, 2005.
  • Singh, J. R., “Effective thermal conductivity of
  • highly porous two-phase systems”, Applied
  • Thermal Engineering, 24, 2727–2735, 2004.
  • Argento, C. ve Bouvard, D., “Modeling the
  • effective thermal conductivity of random packing
  • of spheres through densification”, Int. J. Heat
  • Mass Transfer, 39, 1343–1350, 1996.
  • Tichá, G., Pabst, W. ve Smith, D.S., “Predictive
  • model for the thermal conductivity of porous
  • materials with matrix-inclusion type
  • microstructure”, Journal of Materials Science
  • (Letters), 40 (18), 5045-5047, 2005.
  • Baschirow, A.B. ve Selenew, J.W., “Thermal
  • Conductivity of Composites”, Plaste Kaut, 23,
  • , 1976.
  • Bruggeman, D.A.G., “Calculation of physical
  • constants from heterogeneous substances”,
  • Annals of Physics, 24, 636, 1935.
  • Schulz, B., “Thermal conductivity of porous and
  • highly porous materials”, High Temperature-
  • High Pressures., 13, 649-660, 1981.
  • Meredith, R.E. ve Tobias, C.W., Conduction in
  • heterogeneous systems, Editör: Tobias, C.W.,
  • Advances in Electrochemistry and
  • Electrochemical Engineering, vol. 2, Interscience
  • Publisher, Newyork, 15-47, 1962.
  • Coble, R.L., Kingery, W.D., “Effect of porosity
  • on physical properties of sintered alumina”, J.
  • Am. Ceram. Soc., 39, 377–384, 1956.
  • Pabst, W., “Simple second-order expression: For the
  • porosity dependence of thermal conductivity”,
  • Journal of Materials Science, 40 (9-10), 2667-
  • (3), 2005.
  • Boomsma, K. ve Poulikakos, D., “On the
  • effective thermal conductivity of a threedimensionally
  • structured fluid-saturated metal
  • foam”, International Journal of Heat and Mass
  • Transfer, 44, 827-836, 2001.
  • Sugawara, A. ve Yoshizawa, Y., “An
  • Investigation on the Thermal Conductivity of
  • Porous Materials and its Application to Porous
  • Rock”, Australian J. Phys., 14, 468-469, 1961.
  • Fan, L.-W., Hu, Y.-C., Tian, T. ve Yu, Z.-T.,
  • “The prediction of effective thermal
  • conductivities perpendicular to the fibres of wood
  • using a fractal model and an improved transient
  • measurement technique”, International Journal
  • of Heat and Mass Transfer, 49, 4116–4123,
  • -
  • Peitgen, H.O. ve Saupe, D., The Science of
  • Fractal Images, Springer-Verlag Newyork Inc,
  • New York, U.S.A., 1988.
  • Hamilton, R.L. ve Crosser, O.K., “Thermal
  • conductivity of heterogeneous two-component
  • systems”, Industrial and Engineering
  • Chemistry Fundamentals, 1(3), 187–191, 1962.
  • Davis, R.H., “Thermal conductivity of mixture
  • with spherical inclusions”, Int. J. Thermophys.,
  • , 609-620, 1986.
  • Lu, S.-Y. ve Lin, H.-C., “Effective conductivity of
  • composites containing aligned spheroidal inclusions of
  • finite conductivity”, Journal of Applied Physics, 79,
  • , 1996.
  • Bhattacharya, A., Calmidi, V.V. ve Mahajan,
  • R.L., “Thermophysical properties of high
  • porosity metal foams”, International Journal of
  • Heat and Mass Transfer, 45, 1017-1031, 2002.
  • Kalaprasad, G., Pradeep, P., Mathew, G.,
  • Pavithran, C. ve Thomas, S., “Thermal
  • conductivity and thermal diffusivity analyses of
  • low-density polyethylene composites reinforced
  • with sisal, glass and intimately mixed sisal/glass
  • fibres”, Composites Science and Technology,
  • , 2967-2977, 2000.
  • Springer, G.S., Tsai, S.W., “Thermal
  • conductivities of unidirectional materials”, J.
  • Compos. Mater, 1, 166-173, 1967.
  • Verma, L.S., Shrotriya, A.K., Singh, R. ve
  • Chaudhary, D.R., “Thermal conduction in twophase
  • materials with spherical and non-spherical
  • inclusions”, J. Phys. D: Appl. Phys., 24, 1729–
  • , 1991.
  • Druma, A.M., Alam, M.K. ve Druma, C.,
  • “Analysis of Thermal Conduction in Carbon
  • Foams”, International Journal of Thermal
  • Sciences, 43, 689-695, 2004.
  • Gibson, P.W., “Multiphase heat and mass transfer
  • through hygroscopic porous media with
  • applications to clothing materials”, Technical
  • Report Natick/TR-97/005, U.S. Army Natick
  • Research, Development, and Engineering Center,
  • MA, Natick, U.S.A., 1996.
  • Patirop, C., Modeling of Thermal Performance of
  • Firefighter Protective Clothing During The
  • Intense Heat Exposure, Doktora Tezi, North
  • Carolina State University, Mechanical Engineering
  • Departmant, Raleigh, North Carolina, 2004.
  • Rahman, M.S. ve Chen, X.D., “A general form of
  • thermal conductivity equation as applied to an
  • apple: effects of moisture, temperature and
  • porosity”, Drying Technol., 13, 1-18, 1995.
  • Rahman, M.S., Chen, X.D. ve Perera, C.O., “An
  • improved thermal conductivity prediction model
  • for fruits and vegetables as a function of
  • temperature, water content and porosity”,
  • Journal of Food Engineering, 31, 163–170,
  • -
  • Rahman, M.S., “Thermal conductivity of four
  • food materials as a single function of porosity
  • and water content”, J. Food Eng., 15, 261-268,
  • -
  • Gupta, M., Yang, J. ve Roy, C., “Modelling the
  • Effective Thermal Conductivity in Polydispersed Bed
  • Systems: A Unified Approach using the Linear
  • Packing Theory and Unit Cell Model”, The Canadian
  • Journal of Chemical Engineering, 80, 830-839,
  • -
  • Gupta, M., Yang, J. ve Roy, C., “Predicting the Effective
  • Thermal Conductivity of Polydispersed Beds of Softwood
  • Bark and Softwood Char”, Fuel, 82, 395-404, 2003.
  • Tsotsas, E. ve Martin, H., “Thermal Conductivity
  • of Packed Beds: A Review”, Chem. Eng.
  • Process, 22, 19–37, 1987.
  • Zehner, P. ve Schlunder, E.U., “Thermal
  • Conductivity of Granular Materials at Moderate
  • Temperatures”, Chemie Ingr Tech., 42, 933-
  • , 1970.
  • Fu, X., Viskanta, R. ve Gore, J.P., “Prediction of
  • Effective Thermal Conductivity of Cellular
  • Ceramics”, Int. Comm. Heat Mass Transfer, 25
  • (2), 151-160, 1998.
  • Lee, S.L. ve Yang, J.H., “Modelling of Effective
  • Thermal Conductivity for A Nonhomogeneous
  • Anistropic Porous Medium”, Int. J. Heat Mass
  • Transfer, 41 (6-7), 931-937, 1997.
  • Park, J., Thermal/Fluid Characteristics of
  • Isotropic Plain-Weave Screen Laminates as
  • Heat Exchange Surfaces, Master Thesis,
  • University of Nevada, Mechanical Engineering
  • Departmant, Reno, Nevada, U.S.A., 2001.
  • Xu, J. ve Wirtz, R.A., “In-Plane Effective
  • Thermal Conductivity of Plain-Weave Screen
  • Laminates”, IEEE Transactions on components
  • and packaging Technologies, 25 (4), 615-620,
  • -
  • Hu, X.-J., Du, J.-H., Lei, S.-Y. ve Wang, B.-X.,
  • “Technical Note:A model for the thermal
  • conductivity of unconsolidated porous media
  • based on capillary pressure±saturation relation”,
  • International Journal of Heat and Mass
  • Transfer, 44, 247-251, 2001.
  • Liang, X.-G.ve Qu, W. “Effective thermal
  • conductivity of gas-solid composite materials and
  • the temperature difference effect at high
  • temperature”, International Journal of Heat
  • and Mass Transfer, 42 (10), 1885-1893(9),
  • -
  • Soma Shekar, S., Thermal performance of
  • plain weave screen as a heater surface in
  • paralel plate free convection, Master Tezi,
  • University of Nevada, Mechanical Engineering,
  • Reno, Nevada, 94, 2006.
  • Seo, B.H., Cho, Y.J., Youn, J.R., Chung, K.,
  • Kang, T.J. ve Park, J.K. “Model for Thermal
  • Conductivities in Spun Yarn Carbon Fabric
  • Composites”, Polymer Composites, 26, 791-
  • , 2005.
  • Carson, J.K., Lovatt, S. J., Tanner, D.J. ve
  • Cleland, A.C., “Experimental measurements of
  • the effective thermal conductivity of a pseudoporous
  • food analogue over a range of porosities
  • and mean pore sizes”, Journal of Food
  • Engineering, 63, 87–95, 2004.
  • Jiang, P., Li, M., Lu, T., Yu, L. ve Ren, Z.,
  • “Experimental Research on Convection Heat
  • Transfer in Sintered Porous Plate Channels”,
  • International Journal of Heat and Mass
  • Transfer, 47, 2085-2096, 2004.
  • Jang, B.K. ve Matsubara, H., “Influence of
  • rotation speed on microstructure and thermal
  • conductivity of nano-porous zirconia layers
  • fabricated by EB-PVD”, Scripta Materialia,52,
  • -558, 2005.
  • Fu, X. ve Chung, D.D.L., “Effects silica fume
  • latex methycellulose and carbon fibers on the
  • thermal conductivity and specific heat of cement
  • paste”, Cement and Concrete Research, 27
  • (12), 1799-1804(6), 1997.
  • Levine, I.N., Physical chemistry, McGraw-Hill
  • Education, Maidenhead, England, 2001.
  • Lide, D.R., CRC Handbook of chemistry and
  • physics, CRC Press, Boca Raton (FL), U.S.A,
  • -