FRP donatı-beton aderansı deney yöntemlerinin aderansı etkileyen parametrelere göre karşılaştırılması

FRP donatı-beton aderansını belirlemek için uluslararası deney yönetmeliklerinde birçok deney yöntemi bulunmaktadır. Ancak, bu deney yöntemlerinin deney şartlarındaki farklılıklar FRP donatı-beton aderansını etkilemektedir. Dolayısıyla değişkenlerin aynı değerlerine göre yapılan deneylerde bile deneysel farklılıklardan ötürü farklı aderans gerilmesi değerleri oluşmaktadır. Bu çalışmada, gauss süreci regresyonu (GPR) kullanılarak FRP donatı-beton aderansını etkileyen faktörler aderans deney yöntemlerine (mafsallı kiriş, kiriş ucundan çekip çıkarma, bindirme eki boyu ve çekip çıkarma deneyi) göre ayrı ayrı belirlenmiştir. Çalışmada, donatı çapı, donatı lif türü, donatı yüzey özelliği, donatı gömülme boyu, donatının beton içindeki konumu, pas payı, beton basınç dayanımı ve enine donatı etkisi gibi sekiz değişken göz önüne alınmıştır. Bu sayede hem FRP donatı-beton aderansını etkileyen her bir değişkenin deneysel yöntemlerden ne kadar etkilendiği araştırılmış hem de aderans deney yöntemlerinin aderansı etkileyen parametrelere göre karşılaştırılması yapılmıştır. Dört aderans deney yönteminin aynı deney değişkenlerine göre yapılan analizleri, deney yöntemlerine göre aderans gerilmesi değerleri arasında neredeyse dört kata varan farklar olduğunu göstermiştir. Mafsallı kiriş deneylerinden elde edilen ortalama aderans gerilmesi değerleri, çekip çıkarma deneylerinden elde edilen ilgili değerlerden % 31, kiriş ucundan çekip çıkarma değerlerinden % 3 ve bindirme eki boyu deney değerlerinden % 146 yüksek çıkmıştır. Aynı zamanda aderansı etkileyen faktörlerin deneysel yöntemlere göre aderans gerilmesine etki oranlarının değiştiği ve hatta aynı değişkenin farklı deneysel yöntemlerde zıt etkilere neden olabileceği gözlemlenmiştir.

Comparison of different FRP reinforcement-concrete bond test methods according to parameters affecting this bond

There are many test methods in the international testing standards for the evaluation of FRP reinforcement-concrete bond. However, differences in test conditions of these methods affect FRP reinforcement-concrete bond. Therefore, even in the tests with identical test parameters, different bond strength values are attained due to experimental differences. In this study, the factors affecting FRP reinforcement-concrete bond were determined individually for four different test methods (hinged beam, beam-end, spliced beam and pullout tests) by using the gauss process regression (GPR) method. Accordingly, eight parameters affecting the bond strength, namely the diameter, fiber type, surface texture, embedment length, location in concrete and clear cover of reinforcement, the concrete compressive strength and the presence and degree of confining by means of transverse reinforcement were adopted as test parameters. In this way, the effects of each variable on bond strength were investigated for each test method and the methods were compared in terms of each parameter. The analyses on the four methods for identical test parameters depicted that there were differences in bond strength values as great as four times from one test parameter to another. The average bond strength values from the hinged beam tests were about 31, 3 and 146 % higher than the respective values from the pullout tests, beam-end tests and spliced beam tests, respectively. The degree of influence of each parameter on bond strength was established to depend on the test method and the same parameter was found to even have opposite effects on bond strength in different test methods.

___

  • Islam, S., Afefy, H. M., Sennah, K., Azimi, H., Bond characteristics of straight- and headed-end, ribbed-surface, GFRP bars embedded in high-strength concrete, Constr. Build. Mater., 83(2), 283–298, 2015.
  • JSCE 1997 Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Japan Society of Civil Engineers, Japan, 1997.
  • CSA S6-10 Canadian Highway Bridge Design Code, Canadian Standards Association, Ontario, Canada, 2010.
  • CSA S806-12 Design and Construction of Building Structures with Fibre-Reinforced Polymers, Canadian Standards Association, Canada, 2012.
  • ACI 440.1R-15 Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, American Concrete Institute (ACI), MI, USA, 2015.
  • EN 10080 Steel for the Reinforcement of Concrete - Weldable Reinforcing Steel - General, European Committee For Standardization, Brussels, Belgium, 2005.
  • RC 5 Bond Test for Reinforcement Steel. 1. Beam Test, 1982, RILEM Recommendations for the Testing and Use of Constructions Materials, Paris, France, 1982.
  • RC 6 Bond Test for Reinforcement Steel. Part 2. Pull-out Test, RILEM Recommendations for the Testing and Use of Constructions Materials, Paris, France, 1983.
  • ASTM A944-10 Standard Test Method for Comparing Bond Strength of Steel Reinforcing Bars to Concrete Using Beam-End Specimens, ASTM International, USA, 2015.
  • ACI 440.3R-12 Guide Test Methods for Fiber- Reinforced Polymer (FRP) Composites for Reinforcing or Strengthening Concrete and Masonry Structures, American Concrete Institute (ACI), MI, USA, 2012.
  • JSCE-E 539-1995 Test Method For Bond Strength of Continuous Fiber Reinforcing Materials By Pull-Out Testing, Japan Society of Civil Engineers, Japan, 1995.
  • ISO 10406-1 Fibre-Reinforced Polymer (FRP) Methods — Reinforcement of Concrete-Test Part 1: FRP Bars and Grids, International Organization for Standardization (ISO), Switzerland, 2015.
  • ASTM D7913/D7913M-14 Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing, ASTM International, USA, 2014.
  • ACI 408R-03 Bond and Development of Straight Reinforcing Bars in Tension, American Concrete Institute (ACI), MI, USA, 2003.
  • Tighiouart, B., Benmokrane, B., Gao, D., Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars, Constr. Build. Mater., 12(8), 453–462, 1998.
  • Gudonis, E., Kacianauskas, R., Gribniak, V., Weber, A., Jakubovskis, R., Kaklauskas, G., Mechanical Properties of the Bond Between GFRP Reinforcing Bars and Concrete, Mech. Compos. Mater., 50(4), 457–466, 2014.
  • Veljkovic, A., Carvelli, V., Haffke, M. M., Pahn, M., Concrete cover effect on the bond of GFRP bar and concrete under static loading, Compos. Part B Eng., 124, 40–53, 2017.
  • Antonietta Aiello, M., Leone, M., Pecce, M., Bond Performances of FRP Rebars-Reinforced Concrete, J. Mater. Civ. Eng., 19(3), 205–213, 2007.
  • Esfahani, M. R., Kianoush, M. R., Lachemi, M., A Comparison Between Bond Strength of Steel and GFRP Bars in Self-Consolidating Concrete (SCC), Int. J. Civ. Eng., 2(3), 193–200, 2004.
  • Kang, J., Kim, B., Park, J., Lee, J., Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete, J. Korea Concr. Inst., 24(1), 79–86, 2012.
  • Achillides, Z., Pilakoutas, K., Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions, J. Compos. Constr., 8(2), 173–181, 2004.
  • Lee, J.-Y., Kim, T.-Y., Kim, T.-J., Yi, C.-K., Park, J.-S., You, Y.-C., Park, Y.-H., Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete, Compos. Part B Eng., 39(2), 258–270, 2008.
  • Park, J.-S., Lim, A.-R., Kim, J., Lee, J.-Y., Bond performance of fiber reinforced polymer rebars in different casting positions, Polym. Compos., 37(7), 2098–2108, 2016.
  • Choi, D.-U., Ha, S.-S., Lee, C.-H., Development Length of GFRP Rebars Based on Pullout Test, J. Korea Concr. Inst., 19(3), 323–331, 2007.
  • Tekle, B. H., Khennane, A., Kayali, O., Bond Properties of Glass Fibre Reinforced Polymer Bars With Fly-Ash Based Geopolymer Concrete, 10th International Conference on Composite Science and Technology (IDMEC 2015), Lisboa, Portugal, pp. 1–8, 2015.
  • Ehsani, M. R., Saadatmanesh, H., Tao, S., Bond Behavior of Deformed GFRP Rebars, J. Compos. Mater., 31(14), 1413–1430, 1997.
  • Ha, S.-S., Choi, D.-U., Development Length of GFRP Bars, J. Korea Concr. Inst., 22(1), 131–141, 2010.
  • Shen, D., Ojha, B., Shi, X., Zhang, H., Shen, J., Bond stress–slip relationship between basalt fiber-reinforced polymer bars and concrete using a pull-out test, J. Reinf. Plast. Compos., 35(9), 747–763, 2016.
  • Khederzadeh, H. R., Sennah, K., Pullout Strength of Pre-installed Sand-coated GFRP Bars for Bridge Barrier Construction, 4th International Structural Specialty Conference (CSCE 2014), Halifax, NS, pp. 1–10, 2014.
  • Lu, J., Investigation of Pullout Strength of Pre‐Installed Glass Fibre Reinforced Polymer Bars In High‐Performance Concrete, Master Thesis, Ryerson University, 2015.
  • Jung, W. T., Park, Y. H., Park, J. S., An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type, J. Korean Soc. Civ. Eng., 31(4a), 279–286, 2011.
  • Larralde, J., Silva‐Rodriguez, R., Bond and Slip of FRP Rebars in Concrete, J. Mater. Civ. Eng., 5(1), 30–40, 1993.
  • Akbas, T. T., Celik, O. C., Yalcin, C., Experimental Bond Behaviour of Deformed Cfrp Rebars in High Strength Concrete, Concrete – Innovation and Design, fib Symposium, Copenhagen, Denmark, pp. 1–9, 2015.
  • Arias, J. P. M., Vazquez, A., Escobar, M. M., Use of sand coating to improve bonding between GFRP bars and concrete, J. Compos. Mater., 46(18), 2271–2278, 2012.
  • Quayyum, S., Bond Behaviour of Fibre Reinforced Polymer (FRP) Rebars in Concrete, Master Thesis, The University Of British Columbia, 2010.
  • Melo, J., Gaussian Processes for Regression: A Tutorial, 2011.
  • Rasmussen, C. E., Williams, C. K. I., Gaussian Processes for Machine Learning, The MIT Press, 2006.
  • Schulz, E., Speekenbrink, M., Krause, A., A tutorial on Gaussian process regression with a focus on exploration-exploitation scenarios. bioRxiv, 2017.
  • Douglas C. Montgomery, Elizabeth A. Peck, G. G. V., Introduction to Linear Regression Analysis, Wiley, 2012.
  • Bi, Q. W., Wang, Q. X., Wang, H., Study on Bond Properties of BFRP Bars to Basalt Fiber Reinforced Concrete, Adv. Mater. Res., 163–167, 1251–1256, 2010.
  • Bi, Q., Wang, H., Bond Strength of BFRP Bars to Basalt Fiber Reinforced High-Strength Concrete, Advances in FRP Composites in Civil Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 576–580, 2011.
  • Krem, S., Soudki, K., Development Length of Carbon-Fiber-Reinforced Polymer Bars in Self-Consolidating Concrete. Design, Production and Placement of Self-Consolidating Concrete, Springer Netherlands, Dordrecht, pp. 379–391, 2010.
  • Ehsani, M. R., Saadatmanesh, H., Tao, S., Design Recommendations for Bond of GFRP Rebars to Concrete, J. Struct. Eng., 122(3), 247–254, 1996.
  • Xue, W., Zheng, Q., Yang, Y., Fang, Z., Bond behavior of sand-coated deformed glass fiber reinforced polymer rebars, J. Reinf. Plast. Compos., 33(10), 895–910, 2014.
  • Yu, N. H., Fan, J. J., Experimental Study of Bond Stress between Concrete and FRP Rebars, Appl. Mech. Mater., 488–489, 774–777, 2014.
  • Yan, F., Lin, Z., Yang, M., Bond mechanism and bond strength of GFRP bars to concrete: A review, Compos. Part B Eng., 98, 56–69, 2016.
  • Jiang, S. Y., Ye, Y., Fei, W., Experiment on the Bonding Performance of BFRP Bars Reinforced Concrete, Appl. Mech. Mater., 174–177, 993–998, 2012.
  • ACI 440.1R-06 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute (ACI), MI, USA, 2006.
  • Baena, M., Torres, L., Turon, A., Barris, C., Experimental study of bond behaviour between concrete and FRP bars using a pull-out test, Compos. Part B Eng., 40(8), 784–797, 2009.
  • Quayyum, S., Rteil, A., Bond Strength of FRP Rebar to Concrete : Effect of Concrete Confinement, Proceedings of the 5th International Conference on FRP Composites in Civil Engineering (CICE 2010), Beijing, China, pp. 581–584, 2010.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ